Геминальные и другие дигалогеналканы в зависимости от соотношения реагентов образуют различные соединения:
Четыреххлористый углерод образует как трихлорметильные фосфорильные соединений [например, (RO)2P(O)CC13], так и дихлорметилендифосфорильные [напр., (RO)2P(O)—CC12—(O)P(OR)2]; реакция ускоряется пероксидами или УФ-облучением.
Вицинальные галогенпроизводные, содержащие хотя бы у одного атома С два электроноакцепторных заместителя, с полными фосфитами реагируют не по схеме реакции Арбузова:
Перфторолефины взаимод. с триалкилфосфитами с образованием в качестве промежуточных соединений фосфоранов:
Реагенты, молекулы которых содержат электрофильные атомы Н, Hal, S, N и другие, вступают в реакции, родственные реакции Арбузова , в этом случае связь С—Р не образуется, например:
Полные тиолфосфиты обычно взаимодействуют с алкилгалогенидами и галогенациламинами не по схеме реакции Арбузова . Промежуточно здесь образуются не квазифосфониевые, а квазисульфониевые соединения, распадающиеся до галогентиофосфитов, например:
Реакции Арбузова широко используют для получения соединений со связью С—Р, в том числе пестицидов, лекарственных препаратов, экстрагентов и др. Реакция открыта А. Е. Арбузовым в 1905.
5.Возможность протекания перегруппировки по другому направлению.
В некоторых случаях гомолитический механизм может направлять процесс по схеме реакции Арбузова, тогда как в обычных условиях взаимодействие протекает в другом направлении. Так, хлорацетон как a-галогенкарбонильное соединение в обычных условиях реагирует с триалкилфосфитами по схеме реакции Перкова с образованием диалкилизопропенилфосфата. При фотолизе смеси хлорацетона с триалкилфосфитом протекает реакция Арбузова с образованием ацетонилфосфоната.
Это еще один удачный пример применения гомолитической реакции Арбузова для синтеза функционально замещенных фосфорорганических соединений.
Галоген альдегиды и
галогенкетоны в зависимости от строения реагентов и условий протекания реакции образуют винилфосфаты (Перкова реакция)или кетофосфонаты:Ацилгалогениды в р-ции с триалкилфосфитами образуют
кетофосфонатыВыводы
Таким образом, универсальность реакции Арбузова (как ее классического варианта, так и новых видов) состоит в том, что она может быть осуществлена с широким выбором электрофильных реагентов в условиях гетеро- и гомолитического взаимодействия. Не исключается возможность протекания реакции по двум механизмам в одном процессе. Предпочтение тому или иному варианту реакции Арбузова отдают с учетом конкретных препаративных целей. Эта реакция принесла всемирное признание ее автору, дала ключ к пониманию структуры органических соединений фосфора и тем самым подтвердила плодотворность основных положений теории химического строения А.М. Бутлерова.
Значение новых идей в науке проверяется временем. Прошедшие десятилетия не состарили реакцию Арбузова. Наоборот, в химии фосфорорганических соединений, которая своим становлением и развитием во многом обязана этой реакции, в настоящее время нет другого столь универсального метода синтеза. И хотя химия органических соединений фосфора располагает широким арсеналом синтетических методов (в том числе и приводящих к образованию новых фосфоруглеродных связей), тем не менее реакция Арбузова продолжает оставаться важнейшей.
Реакция Арбузова позволяет вводить фосфорсодержащий заместитель с различным числом фосфоруглеродных связей в другие органические молекулы. Можно сказать и по-другому: с помощью этой реакции мы получаем возможность вводить к атому фосфора самые различные фрагменты органических молекул. Если же в последних имеются функциональные группы или кратные связи, то такие соединения могут явиться исходными для дальнейших синтезов. Направления дальнейших химических превращений будут определяться природой функциональных групп, фосфорсодержащего заместителя и их взаимным влиянием. Вот в чем уникальность и неисчерпаемые синтетические возможности реакции Арбузова.
Перегруппировка Виттига.
1.Общие сведения о перегруппировке.
Перегруппировка Виттига заключается в превращении простых эфиров при металлировании или другом аналогичном воздействии в спирты с перемещением одной алкильной группы в a - положение другой. Только такие группы, как бензил или аллил, образующие достаточно устойчивые анионы, т.е. способные легко подвергаться металлированию, вызывают миграцию.
Приведем пример:
Перегруппировка Виттига является электрофильной,внутримолекулярной, стереоспецифической, протекает без изомеризации, с миграцией от атома углерола к другому атому углерода в насыщенных системах.
2.Механиз перегруппировки.
1.Перегруппировка Виттига происходит в результате обработки эфиров фениллитием. Первая стадия процесса состоит в замещении a - водородного атома бензильной или другой реакционноспособной алкильной группы на литий. (см. Схему перегруппировки стадия I)
2.Виттиг предположил, что в металлическом производном либо уже имеется, либо легко образуется карбанион, к отрицательному центру, которого перемещается в виде электрофильного остатка другая алкильная группа, имеющая только шесть электронов в оболочке с главным квантовым числом 2. (см. Схему перегруппировки стадия II)
3.Доказательства механизма перегруппировки и ее стереоспецифичности.
Хаузер и Кантор проводили эту же реакцию путем обработки эфиров амидом калия в жидком аммиаке с последующим добавлением этилового эфира. Условия этой реакции соответствуют предложенному Виттигом механизму реакции. Были получены некоторые качественные данные по относительным скоростям миграции различных алкильных групп. В случае 9-флуорениловых эфиров Виттиг наблюдали следующую последовательность скоростей: аллил, бензил> метил, этил> фенил. Из исследования Хаузера и Кантора следует, что втор-бутил> трет–бутил. Тот факт, что в ряду простых ненасыщенных алкильных групп неопептильная и трет-бутильная группы обладают относительно низкими скоростями миграции, указывает на согласованное изменение связей с мигрирующей группой. Мигрирующая группа перемещается от ониевого атома к углеродному атому, т.е. от центра, предрасположенного к потере катиона, к углеродному центру, способному сохранять отрицательный заряд и реагировать в форме аниона, это доказывает механизм реакции. Причем при введении в систему щелочи, скорость увеличивается, т.е. при наличии щелочи полностью образуется анионный центр,- это подтверждает двух стадийный механизм реакции. Это же может служить доказательством стереоспецифичности перегруппировки.
4. Доказательства электрофильности перегруппировки.
Электрофильность перегруппировки доказывается следующим образом. При рассмотрении II-стадии (т.е. непосредственно самой перегруппировка), мы видим, что наличие С6Н5- группы позволяет стабилизировать карбанион образующийся на II-стадии – который является нуклеофильной составляющей реакции. Электрофильная составляющая образуется за счет сдвига электронной плотности к атому кислорода. (-ониевый атом) Таким образом, мигрирующая группа выступает в качестве электрофильной составляющей. А так как атака происходит именно этой группой, то мы можем сказать, что данная перегруппировка является электрофильной.
Перегруппировки в ароматическом ряду.
Известно большое число примеров ароматических соединений, у которых атомы или группы атомов, связанные с азотом или кислородом заместителя, под действием кислот переходят в орто- или пара- положение ароматического кольца. Реакции такого рода называются ароматическими перегруппировками.
Электрофильные перегруппировки в ароматическом ряду
Ароматическими электрофильными перегруппировками называются такие перегруппировки, в ходе которых мигрирующая группа переходит из боковой цепи в ароматическое ядро как электрофильная частица(32).
Рассмотрим некоторые из них
Перегруппировка Фриса.
1.Общие сведения о перегруппировке
Перегруппировка Фриса, превращение сложных эфиров фенолов в орто- или пара-ацилфенолы под действием к-т Льюиса, напр.:
Перегруппировка Фриса проводят в органическом растворителе (обычно в PhNO2, PhCl, CS2, Cl2CHCHCl2) или в его отсутствие (обычно, когда требуется нагревание св. 70 0C).
В качестве кислоты Льюиса обычно используют AlCl3 (в стехиометрическом или несколько большем количестве), реже - TiCl4, SnCl4, FeCl3, ZnCl2- В некоторых случаях хорошие результаты дает применение безводного HF.
Перегруппировка Фриса является электрофильной, протекает с миграцией от атома кислорода к атому углерода в ароматических системах без изомеризации не стереоспецифично, вопрос об интрамолекулярности или об интермолекулярности не решен однозначно.