Образцы из ПА-12 изготавливали следующим образом: на предварительно обезжиренную полиамидную пленку натягивали элементарные волокна, концы которых фиксировали клеем БФ-6. Затем заготовку укладывали между двумя слоями пленки. Пакет прессовали при 200 °С в течение 3—4 мин при сомкнутых плитах пресса. После охлаждения полученную пластину нарезали на образцы.
Для получения образцов с эпоксидным связующим ЭДТ-10 были разработаны специальные формы, позволяющие натянуть элементарное волокно, которое заливали связующим. Отверждение протекало в течение 8 ч при температуре 160 °С.
Образцы испытывали на универсальной разрывной машине. Скорость деформирования 0,21 — 1 мм/мин в зависимости от вида матрицы и температуры окружающей среды. Результаты испытаний приведены ниже:
Углеродное волокно | Матрица | Прочность на сдвиг, МПа |
Т-300В | ПА-12 | 25 |
ЭДТ-10 | 74 | |
Модмор-1 | ПА-12 | 52 |
ЭДТ-10 | 82 |
Из приведенных данных видно, что предлагаемый метод чувствителен к особенностям, связанным как с типом волокна, так и с видом матрицы. Указанные значения прочности на сдвиг соизмеримы со значениями, получаемыми при испытании на продольный сдвиг. Для достоверного определения прочности на сдвиг достаточно испытать 3—4 образца. Стремление сократить объем испытаний привело нас, к изготовлению образцов с несколькими волокнами. Однако было замечено, что образцы с пучком волокон разрушаются при значительно меньших нагрузках, чем образцы с одним волокном. В результате преждевременного разрушения дробление не доходит до критической длины, и оценить адгезию нельзя. Фрактография показала, что пучок волокон является концентратором напряжения, вызывающим увеличение трещины, в отличие от образцов с одним волокном, в которых разрушение начинается от поверхности. Изменение механизма разрушения можно объяснить взаимным влиянием элементарных волокон в пучке. Как показало исследование, расположение элементарных волокон уже на расстоянии 5—10 диаметров один от другого позволяет избежать отрицательного влияния локального высокого объемного содержания наполнителя.
Для проверки чувствительности предлагаемого метода к изменениям, вызванным поверхностной обработкой волокна, были проведены испытания жгутового наполнителя с разными видами модифицирования поверхности в полиамидной матрице. Таким образом, обработка поверхности волокон сказывается непосредственно на средних значениях длины фрагментов и показателях прочности на сдвиг. Кроме того, возможно изменение прочности волокна на критической длине, информация о которой необходима при расчете прочности на сдвиг по формуле Розена. Определить прочность волокна на критической длине можно, зная масштабную зависимость прочности от длины волокна. Поскольку по результатам испытаний композитов с одиночным волокном можно одновременно определить константы масштабной зависимости прочности, авторы считают рациональным использовать описанный метод для оценки адгезии волокнистых наполнителей к полимерным матрицам.
5. Углеродные волокнистые материалы с противооксидными покрытиями
Для развития ракетной и космической техники, автомобилестроения, химического аппаратостроения и других отраслей народного хозяйства необходимо создание термопрочных и хемостойких материалов, которые в течение длительного времени сохраняют эксплуатационные свойства при работе в агрессивных средах в диапазоне температур 350—600 °С. Такими материалами являются композиты с металлической, керамической, углеродной матрицами, армированными углеродными волокнами [16].
Углеродные волокна (УВ) наряду с комплексом уникальных свойств (высокие прочностные и упругие характеристики, а также хемостойкость, малая плотность) обладают существенным недостатком — активно окисляются на воздухе, начиная с температуры 350 °С, со снижением физико-механических свойств, что ограничивает области их практического использования [17]. Кроме того, поверхность УВ чувствительна к воздействию матриц различных типов, особенно металлической, вследствие их химического взаимодействия на межфазной границе волокно — матрица, что отрицательно сказывается на физико-механических характеристиках композита и снижает межслоевую прочность [18, 19].
С целью повышения термоокислительной устойчивости углеродных волокнистых материалов (УВМ) и лучшей реализации упруго-прочностных и адгезионных свойств УВ в композиционных материалах с различными типами матриц на УВМ наносят защитные (барьерные) покрытия. К широкому классу соединений, обладающих рядом ценных свойств, делающих их перспективными для модифицирования УВ, относятся карбиды тугоплавких металлов.
Из большого класса карбидов для модифицирования УВМ выбраны карбиды кремния и титана (SiC и TiC). SiC и TiC имеют высокие температуры плавления и начала активного окисления, высокие показатели твердости и прочности, отличаются высокой химической стойкостью. Они наиболее пригодны для нанесения на УВМ различных текстильных структур в виде пленочного покрытия.
Выбранные химические реагенты — хлориды кремния и титана — представляют собой бесцветные жидкости с невысокой температурой кипения — 57 и 136 °С соответственно, что позволяет значительно снизить температуру процесса газофазного осаждения покрытия, основанного на реакции восстановления водородом галогенидов (хлоридов) тугоплавких металлов в среде природного газа. Температура процесса газофазного нанесения покрытий SiC и TiC составляет 1300— 1350 °С, HfC и ТаС — выше 2000 °С.
На основе изложенного разработан процесс получения модифицированных УВМ с покрытиями SiC и TiC. Однако исследование свойств модифицированных УВМ показало, что тонкое однослойное покрытие недостаточно эффективно, так как в нем возможны случайные дефекты; это приведет к появлению в материале открытых, незащищенных участков УВ. С увеличением массы УВМ и соответственно толщины слоя покрытие становится менее устойчивым к механическим и тепловым ударам. Поэтому решение проблемы следует искать путем создания пакетных многокомпонентных покрытий из двух и более тонких слоев. В таких покрытиях сочетаются наилучшие качества каждого из слоев, и исключается развитие сквозных трещин и других дефектов, что усиливает эффективность защиты материала от окисления.
В качестве подложки для нанесения покрытий были использованы УВМ различных текстильных структур (сетка, ткань, трикотаж, лента, жгут) марок Урал, УКН, ЛУ.
У образцов модифицированных УВМ с карбидными покрытиями исследованы термоокислительные характеристики на воздухе и в среде кислорода, а также физико-механические свойства и морфологические особенности, структура поверхности.
В табл. 4 приведены экспериментальные данные термоокислительной стойкости (ТОС) образцов УВМ с различным увеличением массы при нанесении карбидов, ассчитанные из кривых ТГА в области температур 100—900 °С в условиях свободной аэрации воздуха.
Данные, приведенные в табл. 4, свидетельствуют о снижении скорости разложения и уменьшении потерь массы УВМ с покрытиями по сравнению с исходным материалом. Температурный интервал интенсивного разложения сдвигается в область более высоких температур. Прослеживается прямая зависимость ТОС образцов от массы нанесенного покрытия (SIC до 7 %). Дальнейшее увеличение массы покрытия нецелесообразно из-за значительного повышения жесткости УВМ, что затрудняет его переработку в композиционные материалы. Лучшее значение ТОС показал образец УВМ с покрытием ПУ+SiC.
Эти выводы подтверждаются результатами исследования кинетики реакционного взаимодействия УВМ с покрытиями с кислородом в статических условиях (Р02,= 150 мм рт. ст.).
Как следует из данных, приведенных в табл. 4, однокомпонентное покрытие SiC замедляет скорость уменьшения массы УВМ в 3—5 раз по сравнению с массой исходного материала, а комбинированное покрытие ПУ+SiC — в 20 раз при температуре испытания 1000 °С.
Морфология поверхности УВМ с защитными покрытиями с помощью РЭМ и СКАН свидетельствует о монолитности слоя покрытия толщиной до 1 мкм УВМ с защитными покрытиями могут использоваться в качестве фильтровальных материалов для очистки высокотемпературных газовых сред от мелкодисперсных фракций абразивных и сажевых частиц в некоторых работоспособность в условиях многоразового использования при температуре до 1000 °С в воздушной среде; матрица — неорганическая (бариевый глиноземистый цемент). [19].
6. Сырье, используемое в производстве композиционных хемосорбционных волокнистых материалов Поликон К
Фенол (ГОСТ 23519-93) – С6Н5ОН (молекулярная масса 94,1) при температуре 25 0C твердое белое кристаллическое вещество (в виде ромбических игл), обладает характерным и очень сильным запахом, плохо растворим в воде, хорошо растворяется в этаноле, эфирах, глицерине и других органических растворителях. На воздухе вследствие окисления принимает сначала розовую, а затем бурую окраску.
Плотность = 1,0545 г/см 3;
Тпл = 42,3ОС;
Ткип = 182ОС.
Серная кислота (ГОСТ 667-73) – H2SO4 – бесцветная вязкая жидкость или моноклинные кристаллы.
Молекулярная масса 98,07;
Плотность = 1,8305 г/см 3;
Тпл = 10,31ОС;
Ткип = 279,6ОС с разложением.
Серная кислота смешивается с водой в любых пропорциях.
Формальдегид НСОН – бесцветный газ с резким раздражающим запахом, используется в виде 40%-ного водного раствора (формалин, ГОСТ 1625-89).
Молекулярная масса 30,03.
Плотность = 0,8153 г/см 3;
Тпл = – 92ОС;
Ткип = – 19,2ОС.
Формальдегид хорошо растворяется в воде, спиртах, умеренно – в бензоле и эфирах; нерастворим в хлороформе, петролейном эфире. ПДК 0,05 мг/м3.