Смекни!
smekni.com

Обзор и математическое моделирование суспензионной полимеризации тетрафторэтилена (стр. 2 из 4)

В процессе полимеризации давление и температуру поддерживают постоянными. В зависимости от применяемого инициатора (персульфат аммония, перекись янтарной кислоты, перекись дисукцинила, перекись водорода) температуру полимеризации поддерживают в пределах от 30 до 90 °С, давление от 0,8 до 35 МПа (от 8 до 35 кгс/см2). В качестве эмульгаторов кроме солей перфторкислот могут использоваться соли: H(C2F4)4COONH4; Cl(CF2CFCl)nCOONH4, где n=3-5; H(CF2)n(CH2)mA, где А — ионная гидрофильная группа. Нефторированные диспергирующие агенты неприменимы в качестве эмульгатора вследствие участия водорода в реакциях передачи цепи и ингибирования процесса. Содержание эмульгатора в реакционной среде всегда значительно ниже критической концентрации мицеллообразования (0,68%). При высоких содержаниях эмульгатора образующиеся частицы полимера имеют вытянутую форму и плохо экструдируются. В связи с этим для исключения коагуляции дисперсии при малом содержании эмульгатора вводится стабилизатор.

В качестве стабилизаторов предложены различные, жидкие в условиях полимеризации, углеводороды (октадекан, цетан, парафиновое масло, парафины и др.), а также фторхлорсодержащие углеводороды (ССl4, СНСl3, CHF2Cl, CF2ClCFCl2 и др.) и перфторуглеводороды. Как указывалось в разделе суспензионной полимеризации, частично фторированные органические соединения способны обрывать цепи за счет передачи фтора на растущий полимерный радикал. Поэтому при применении в качестве стабилизатора, например, CF2C1CFC12 предпочтительно проведение полимеризации при пониженной температуре.

Недостатком эмульсионного процесса по сравнению с суспензионным, является его чувствительность почти ко всем изменениям параметров полимеризации и составу полимеризуемой смеси. Неправильно подобранный режим полимеризации может привести к потере экструзионной способности полимера и снижению качества покрытий, получаемых из водных дисперсий. Большое значение для перерабатываемости полимера имеет форма дисперсных частиц, образующихся при полимеризации. Необходимо, чтобы частицы имели эллипсоидную форму близкую к сферической.

Недостатком является также низкая технологичность процесса ее получения в силу необходимости использования ПАВ и малой устойчивости эмульсии, которая легко коагулируется при разрушении стабилизатора.

Молекулярная масса эмульсионного ПТФЭ несколько ниже, чем суспензионного, и достигает 2,5·106 — 3,5·106. Это связано с более высокой температурой полимеризации, другой, по сравнению с суспензионной полимеризацией, инициирующей системой, коллоидной формой частиц полимера, поверхность которых смачивается водой за счет сорбции ПАВ, и наличием стабилизатора (углеводорода), способного участвовать в реакциях передачи цепи.

Средний размер частиц, обычно получаемых при эмульсионной полимеризации ТФЭ, составляет 0,25 мкм. В ряде случаев для ускорения нанесения покрытий и других назначений целесообразно использовать дисперсии с более крупными частицами. Для увеличения устойчивости дисперсий с укрупненными частицами добавляют небольшое количество [0,0005—0,0015% (масс.)] антикоагулянтов (терпеновых углеводородов) перед полимеризацией или после достижения степени превращения 7—10% вводят обычные или фторированные анионогенные ПАВ. Этот прием позволяет получить дисперсии с содержанием ПТФЭ 30%.


1.1.2 Радиационная полимеризация

Кроме суспензионной и эмульсионной полимеризации тетрафторэтилена в воде под действием химических инициаторов наиболее подробно изучена полимеризация ТФЭ, активированная γ-излучением. Радиационная полимеризация, которая вначале сильно заинтересовала химиков в связи с высоким радиационно-химическим выходом полимера и потенциальной возможностью повышения чистоты полимера и улучшения его свойств, не оправдала надежд исследователей. Этим методом не удалось получить полимер, существенно превосходящий по свойствам ПТФЭ, синтезированный при химическом инициировании, а иногда качество радиационного ПТФЭ было ниже. Поэтому, а также в связи с необходимостью больших затрат на проведение процесса, радиационная полимеризация тетрафторэтилена до сих пор не реализована в промышленности.

Особенностями полимеризации под действием γ-излучения являются:

1) высокий выход ПТФЭ (при 20 °С и мощности дозы 0,1 Вт/кг (10 рад/с) составляет 7·106 моль на 1,6·10-17 Дж (100 эВ) и является наибольшим для всех известных в настоящее время радиационно-химических реакций);

2) длительный эффект последействия;

3) высокая скорость пост-полимеризации.

Механизм радиационной полимеризации ТФЭ еще более сложный, чем механизм полимеризации при химическом инициировании, так как на скорость процесса оказывают влияние продукты радиолиза [1]. При повышении температуры от 70 до 90 °С скорость падает (энергия активации равна 78,5 кДж/моль), что объясняется действием ингибиторов, образующихся в результате радиационно-химических превращений.

Низкомолекулярный ПТФЭ можно получить путем γ-облучения порошка суспензионного или эмульсионного ПТФЭ и последующего его измельчения. Доза излучения 5 Мрад, средний размер частиц после измельчения 1—3 мкм. Этот способ представляет большой интерес для переработки отходов ПТФЭ.

1.1.3 Фотополимеризация

Фотополимеризация ТФЭ представляет интерес в связи с возможностью получения тончайших пленок для электроизоляции деталей микроэлектронных установок. Такие пленки получают при температуре 0—200 °С и давлении 1,33— 101 кПа, а в ряде случаев — менее 0,4 кПа, путем облучения УФ-излучением с длиной волны 180—240 нм. Температура плавления получаемого полимера 330°С.

1.1.4 Суспензионная полимеризация

Полимеризацию тетрафторэтилена обычно осуществляют в водной среде, без применения эмульгаторов. Проведение суспензионной полимеризации в воде позволяет достаточно эффективно отводить выделяющуюся при полимеризации теплоту.

В связи с тем, что вода не участвует в реакциях передачи цепи при радикальной полимеризации виниловых мономеров, осуществление полимеризации в воде позволяет, применяя чистые мономер и другие компоненты, получать ПТФЭ с высокой молекулярной массой (до 107). Поэтому именно этот вид полимеризации тетрафторэтилена будет далее подробно рассмотрен.

В таблице 1.1 приведена норма загрузки компонентов (в массовых частях) [9, 114].

В некоторых случаях для снижения температуры полимеризации вместе с персульфатом аммония используется бисульфит натрия и соли двухвалентного железа.


Таблица 1.1

Норма загрузки реагентов суспензионной полимеризации тетрафторэтилена

Компонент масс.ч
Тетрафторэтилен 30
Персульфат аммония 0,2
Вода дистиллированная 100

Используют тетрафторэтилен, содержащий 0,05–0,4 кг триэтиламина на литр газообразного тетрафторэтилена [8]. Для обеспечения безопасности при полимеризации ТФЭ содержание кислорода должно быть меньше 0,002% (об.).

Суспензионный ПТФЭ из-за высокой вязкости расплава перерабатывается специальными методами, поэтому стремятся получить полимер с максимальной молекулярной массой (больше 107). Такая особенность позволяет в определенных пределах варьировать условия полимеризации (температуру, давление), а не придерживаться строго определенных параметров.

Полимер при суспензионной полимеризации получается в виде рыхлых гранул диаметром от 1 до 6 мм. Гранулы имеют пористость до 80% и из-за несмачиваемости полимера в основном плавают на поверхности воды. Для получения пригодных к переработке порошков гранулы измельчают в воде и сушат. Обычные марки ПТФЭ представляют собой порошки с размером частиц 50—500 мкм, насыпной плотностью 0,2—0,8 г/см3 и удельной поверхностью 2—4 м2/г. Производство электроизоляционной пленки, изготовление тонких листов и получение других прецизионных изделий требуют применения более тонких по дисперсности порошков. Такие порошки позволяют получать изделия с высокими физико-механическими свойствами, малой усадкой, минимальной пористостью, размерной стабильностью и гладкой поверхностью. Они незаменимы для приготовления наполненных композиций ПТФЭ с графитом, стеклом, коксом и другими наполнителями. Порошки с размером частиц 10—50 мкм получают измельчением обычного порошка на струйных мельницах. Удельная поверхность таких порошков доходит до 5 м2/г.

Указанные марки ПТФЭ представляют собой легко комкующиеся порошки, они не обладают сыпучестью и не могут быть использованы для автоматических методов переработки. Для придания сыпучести порошкам ПТФЭ разработаны различные способы гранулирования. Гранулы можно получить при интенсивном механическом перемешивании порошка в воде, в галогенсодержащих органических средах (С2С14, СНС13, ССl4 и др.) или в эмульсии воды с органическими жидкостями (бензин, гексан, октан и др.). Гранулирование осуществляется и при сухом перемешивании. Известны способы получения порошка с хорошей сыпучестью путем добавления трифтортрихлорэтана в воду при полимеризации ТФЭ. Сыпучие марки ПТФЭ могут быть получены как из чистого политетрафторэтилена, так и из его композиций [1].

Органические растворители при получении высокомолекулярного ПТФЭ, как правило, не используются, так как, во-первых, они имеют высокую стоимость, а во-вторых, в их присутствии снижается молекулярная масса ПТФЭ из-за развития реакции передачи цепи на растворитель.

1.2 Кинетическая модель и механизм полимеризации

Изучение кинетики и механизма суспензионной полимеризации тетрафторэтилена в воде представляет собой очень сложную задачу. Независимо от условий полимеризации уже на начальной стадии роста макрорадикала образуется твердая фаза полимера, и на протяжении всего процесса полимеризация носит ярко выраженный гетерогенный характер.