Есть некоторые области техники, где чистый никель применяется или непосредственно в порошкообразном виде или в виде различных изделий, получаемых из порошков чистого никеля. Одной из областей применения порошкообразного никеля являются каталитические процессы в реакциях гидрогенизации непредельных углеводородов, циклических альдегидов, спиртов, ароматических углеводородов. Каталитические свойства никеля аналогичны тем же свойствам платины и палладия. Таким образом, химическая аналогия элементов одной и той же группы периодической системы находит отражение и здесь. Никель, как металл более дешевый, чем палладий и платина, широко применяется в качестве катализатора при гидрогенизационных процессах.
На основе применения порошков чистого никеля было освоено производство пористых фильтров для фильтрования газов, топлива и в различных областях химической промышленности.
Никель широко применяется в качестве электродов для щелочных аккумуляторов. В Германии еще в годы войны был разработан метод изготовления этих электродов из прессованных и спеченных при определенных условиях порошков чистого никеля. Этот способ стал широко применяться в Германии и других странах. Имеются сообщения о том, что пластинки для щелочных аккумуляторов, изготовленные из тонкого порошка чистейшего никеля, полученного через карбонил никеля, имеющие 80% пористости и большую поверхность, показывают высокую производительность. Подобные аккумуляторы сохраняются без разрядки при длительном хранении (примерно до одного года).
Некоторое применение никель находит в виде неорганических соединений в керамической промышленности для различных покрытий, эмалирования и других целей.
Одним из способов добычи чистого никеля является карбонильный метод, основанный на разложении тетракарбонила никеля Ni(CO)4. Это вещество и его применение описано в следующем разделе.
2. Экспериментальная часть
2.1 Карбонил никеля: получение и свойства
Карбонил никеля, тетракарбонил никеля Ni(CO)4, открытый в 1888 г. Лангером, образуется при пропускании оксида углерода (ІІ) при 50 – 100о над мелкораздробленным никелем (полученным, например, восстановлением оксида никеля водородом при 400о С):
Ni + 4CO = Ni(CO)4.
Также Ni(CO)4 можно получить действием оксида углерода (ІІ) под давлением 50 – 100 ат. на концентрированный раствор хлорида гексаммина никеля, нагретого до 80о:
[Ni(NH3)6]Cl2+ 5CO + 2H2O = Ni(CO)4 + (NH4)2CO3 + 4NH4Cl + 2NH3;
обработкой соединения K2[Ni(CO)(CN)3] кислотами:
4K2[Ni(CO)(CN)3] + 2HCl = Ni(CO)4 + 3K2[Ni(CN)4] + 2KCl + H2;
или действием угарного газа и фенилмагнийбромида на хлорид никеля(ІІ):
NiCl2 + 2C6H5MgBr + 4CO = Ni(CO)4 + MgCl2 + MgBr2 + 2C6H5 .
Это бесцветная жидкость, закипающая при 43оС, затвердевающая при -25оС, имеет плотность 1,356 г/см3. Критическая температура Ni(CO)4 лежит около 200оС, а критическое давление равно примерно 30 атм. Полностью разлагается на металлический никель и окись углерода при нагревании до 180 – 200оС или под действием ультрафиолетовых лучей. Карбонил никеля диамагнитен, очень летучий и сильно токсичен. Обнаруживает значительную дисперсию.
Тетракарбонил никеля плохо растворим в воде, растворяется в эфире, бензоле, хлороформе, толуоле. Не взаимодействует с разбавленными кислотами и щелочами.
При действии хлора, брома или иода на Ni(CO)4 образуются дигалогениды никеля, например:
Ni(CO)4 + Br2 = NiBr2 + 4CO.
Кислород или воздух окисляют карбонил никеля до NiO и CO2:
2Ni(CO)4 + 5O2 = 2NiO + 8CO2.
Реакция сопровождается воспламенением. Смесь паров Ni(CO)4 с воздухом взрывчата.
Концентрированная серная кислота бурно (со взрывом) реагирует с карбонилом:
Ni(CO)4 + 2H2SO4(конц.) = NiSO4 + SO2 + 4CO2 + 2H2O.
Сильные окислители, например, азотная кислота, царская водка или газообразный хлор превращают Ni(CO)4 в соли никеля(ІІ):
Ni(CO)4 + 12HNO3(конц.) = Ni(NO3)2 + 10NO2 + 4CO2 + 6H2O.
При действии PF3, PCl3, или PBr3 на карбонил никеля образуются соответственно Ni(PF3)4, Ni(PCl3)4 или Ni(PBr3)4
Тетракарбонил никеля при взаимодействии с различными органическими соединениями образует металлоорганические производные никеля, например: [H2Ni(CO)3]2, Ni(С5Н5)2, C5H5NiNO, Ni(CO)2[P(C6H5)3]2 .
Карбонил никеля при температуре 180-200о разлагается на свободный металл и оксид углерода(ІІ):
Ni(CO)4 =t Ni + 4CO.
Эта реакция нашла применение в промышленности при производстве чистого никеля. В результате получается металл, не требующий какой-либо другой очистки. Таким способом отделяют черновой никель от примесей других металлов, в особенности при разделении меди и никеля.
Ni(CO)4 также служит для никелирования стекол и для приготовления коллоидных растворов никеля путём растворения в толуоле и последующим нагреванием.
2.2 Применение карбонила никеля в промышленности
Ni(CO)4 применим в так называемом процессе Монда для отделения никеля от меди из конвекторного пека. Никелевомедный пек, измельченный и промытый горячей водой (с целью удаления солей натрия), превращается в оксиды прокаливанием при 800о. Если над сплавом, полученным восстановлением оксидов меди и никеля водяным газом (56% Н2 и 25% СО) при 350 – 400оС пропускать оксид углерода (ІІ), нагретый до 50 – 60оС, при атмосферном давлении, образуется тетракарбонил никеля Ni(CO)4. Его отгоняют, и при 180 – 200оС разлагают на металлический никель и оксид углерода (ІІ) . Последний снова вводится в процесс. Никель, полученный по процессу Монда, содержит 99,8% Ni, очень небольшие количества железа и углерода, следы серы и кремния; медь и кобальт отсутствуют. Процесс Монда применим при давлении 200 ат. когда образующийся в жидком состоянии Ni(CO)4 отделяют от Fe(CO)5 дробной перегонкой.
2.3 Получение тетракарбонила никеля в лаборатории
В лабораторных условиях наиболее целесообразно получать карбонил никеля из металлического никеля и оксида углерода (ІІ) при атмосферном давлении и комнатой температуре. Однако никель должен быть в очень активном состоянии. Эта активность значительно повышается в присутствии очень небольшого количества ртути в качестве катализатора. Следы кислорода заметно подавляют активность, но небольшое количество сероводорода нарушает влияние кислорода. Для описываемого метода приготовления тетракабонила никеля сероводород не требуется.
Прибор для приготовления и хранения состоит из стеклянной трубки (Б), которая суживается с одного края и переходит в тонкую длинную трубочку (А). К концу трубочки припаян стеклянный приемник (Д) с трубкой (Г) для отвода газов и выливания Ni(CO)4 из приёмника. Другой, толстый конец трубки Б закрывают резиновой пробкой (В), в которую вставлен тройник для впуска водорода и окиси углерода. Трубку А помещают в печь поворотного типа.
Активный никель приготовляют из формиата никеля. Для этого формиат никеля смешивают с небольшим количеством оксида ртути (1% от веса формиата), и помещают в трубку Б. В трубочку А вставляют пробку из стеклянной ваты, служащей в качестве фильтра. Источники водорода и окиси углерода присоединяют к реакционной трубке посредством толстостенных резиновых шлангов достаточной длинны, необходимой для перемещения прибора. К концу стеклянной трубки Г присоединяют резиновую трубку, ведущую через ртутный клапан к стеклянному капилляру, вставленному в нижнюю часть лабораторной горелки. Горелка должна находиться в вытяжном шкафу. Пламя вызывает разрушение ядовитого карбонила никеля, сопровождающееся появлением ярко-серой окраски, являющейся чрезвычайно чувствительным индикатором этого вещества.
После пропускания через газопроводные трубки соответствующих газов в систему равномерный ток водорода и температуру печи повышают до 190 – 200оС. чем медленнее протекает восстановление никеля, тем более активным он становится. Водород не является необходимым для восстановления формиата никеля, но служит для удаления паров воды. Температура обогрева ни в коем случае не должна превышать 2000С.
После охлаждения трубки до комнатной температуры её помещают в вытяжной шкаф в вертикальном положении так, чтобы газ поступал сверху. Приемник Д погружают в охладительную смесь из твёрдой углекислоты и спирта в сосуде Дьюара и дают свободно поступать оксиду углерода (ІІ). При этом необходимо наличие клапана для предотвращения засасывания воздуха в прибор через отводную трубку. После удаления водорода отводную трубку почти совсем или полностью закрывают, и угарному газу дают поступать с такой скоростью, с какой он может вступать в реакцию. Жидкий тетракарбонил никеля, как и его пары, будет поступать в приемник и замерзать, образуя белое твёрдое вещество.