Опыты по газообразованию подтвердили эффективность предлагаемого состава в заявляемом соотношении компонентов и снижение эффективности при соотношении компонентов, выходящем за пределы заявляемого.
Установлено, что наличие в молекуле «Симусана» большого количества химически активных функциональных группировок обеспечивает возможность создания щелочной плазмолизованной биомассы водорастворимой композиционной смеси с повышенной эмульгирующей активностью по отношению к нефти, обладающей поверхностной и межфазной активностью, устойчивой к окислительной биологической, химической и механической деструкции в течение длительного времени. Композиционная система на основе растворов щелочной плазмолизованной биомассы, «Симусана» и многовалентных металлов минерализованной пластовой воды образует агрегативно устойчивую эмульсию повышенной вязкости на фронте вытеснения нефти в пласте, которая реализует механизм селективной закупорки при фильтрации в пористой среде, а именно эффективно вытесняет остаточную нефть и увеличивает охват пласта заводнением. Кроме того, предлагаемый состав экологически безопасен вследствие биодеградабельности, не вызывает коррозию нефтепромыслового оборудования и не снижает качества товарной нефти. Состав готовят простым смешением компонентов в пресной воде.
С целью создания отечественного биополимера для применения в качестве компонентов буровых растворов и реагентов селективной водоизоляции на кафедре физической и коллоидной химии РГУ нефти и газа был синтезирован кислый полисахарид Ритизан, удовлетворяющий в разной степени сформулированным выше требованиям. В качестве штамма-продуцента были отобраны непатогенные бактерии рода Paracoccusdenitrificans. Комплексный экзополисахарид Ритизан, синтезируемый штаммом бактерий Paracoccusdenitrificans, состоит из нейтрального и двух кислых полисахаридов, один из которых ацилирован. Сухой Ритизан представляет собой высушенную постферментационную жидкость. Это мелкий порошок светло-серого цвета с остаточной влажностью не более 12%. После непродолжительного набухания в воде препарат восстанавливает свойства постферментационной жидкости.
Биополимер Ритизан успешно применяется в составе буровых растворов. Кроме того, были проведены промысловые испытания, выявившие значительную эффективность применения Ритизана в качестве реагента для процессов увеличения нефтеотдачи [5].
Микробные полисахарады имеют ряд преимуществ перед полисахаридами растительного происхождения. Так, эти биополимеры можно получать в необходимых объёмах независимо от времени года и климатических условий. Экономическая целесообразность использования микробных полисахаридов обусловлена их внеклеточной природой и высокой продуктивностью синтеза на дешёвых субстратах. Однако микробные ЭПС имеют высокую себестоимость из-за значительных затрат на научные исследования, связанные с поиском новых продуцентов, новых технологических решений, из-за высокой стоимости используемых субстратов, энергии и рабочей силы.
Растительные ПС гораздо дешевле микробных, однако, значительно уступают им по свойствам. Ввиду наличия в литературных источниках данных о взаимодействии галактоманнанов и ЭПС, интерес представляет рассмотрение возможного их совместного применения для решения сложившейся проблемы.
Гуаровая камедь – это нейтральный водорастворимый полисахарид, получаемый из семян гуарового дерева, Cyanaposis tetragonolobus, и имеет общую структуру галактоманнанов. Гуаран, функциональный полисахарид в гуаровой камеди, состоит из основной цепи (1→4) β-D-маннопирозиловых частей, замещённых в О-6 положениях одиночными боковыми цепями α-D-галактопиранозы. Отношение манноза: галактоза составляет примерно 1,6:1, в зависимости от источника и метода получения.
Гуаровая камедь растворяется в полярных растворителях, образуя сильные водородные связи. Степень растворения гуаровой камеди и вязкость в общем случае возрастают с уменьшением размеров частиц, уменьшением рН, и возрастанием температуры. Производные гуаровой камеди, такие как гидроксипропилгуар, более растворимы и лучше образуют гидраты, чем сама гуаровая камедь. Степень растворения уменьшается в присутствии растворённых солей и других веществ, образующих связи с водой, таких как сахароза.
Растворы Гуарана показывают псевдопластичное поведение и разжижаются при сдвиге. Степень псевдопластичности растворов гуара возрастает с ростом концентрации и молекулярного веса. Растворы гуара не обладают пределом текучести (напряжением пластического течения). Вязкость раствора Гуарана возрастает пропорционально концентрации. В растворах Гуаран находится в конфигурациях клубок-спираль.
Гуаран хорошо выдерживает воздействие солей. Гуаран растворяется в растворах солей, которые содержат вплоть до 70% масс моновалентной соли. Стабильность Гуарана по отношению к солям уменьшается для двухвалентных катионов. При высоких концентрациях ионов кальция гуар выпадает в осадок [11].
Применение водорастворимых полимеров для увеличения нефтеотдачи пластов обусловлено достаточно высокой экономичностью метода и его технологичностью. Бурное развитие биотехнологии, происходящее в последние годы, привело к появлению возможности использования в нефтяной промышленности биополимеров, которые являются полисахаридами как растительного, так и микробного происхождения [5, 24]. Практическая ценность биополимеров определяется, прежде всего, их способностью в малых концентрациях резко менять реологические свойства водных систем – повышать вязкость, образовывать гели, служить стабилизаторами суспензий и эмульсии. Эти свойства привлекли внимание нефтедобытчиков, и биополимеры в последние два десятилетия стали испытывать и применять в практике разведочного и эксплуатационного бурения, повышения нефтеотдачи пластов – улучшение процессов заводнения с использованием ферментативных микробных процессов; модификация профиля проницаемости и селективная закупорка, заводнение с применением биосурфактантов, целенаправленная активация пластовой микрофлоры, стимуляция добывающих скважин, очистка скважинного оборудования от асфальто-парафиновых отложений [24].
По сравнению с традиционно применяемыми при добыче нефти водорастворимыми синтетическими полимерами, биополимеры обладают рядом существенных преимуществ, в том числе такими, которые позволяют применять их в очень жестких условиях, где использование синтетических полимеров неэффективно [3]. Биополимеры устойчивы при температурах до 100–120˚С, а некоторые представители даже до 150˚С, что перекрывает весь температурный диапазон разрабатываемых месторождений. Биополимеры устойчивы в широком интервале рН, как в кислой, так и в щелочной среде. Это позволяет применять их как для составления щелочных композиций, обладающих повышенными нефтевытесняющими свойствами, так и кислотных с пролонгированной растворяющей способностью в отношении карбонатов коллекторских пород. Кроме того, к преимуществам биополимеров по сравнению с другими реагентами можно отнести их безопасность как для человека, так и для окружающей среды.
Важным свойством биополимеров является устойчивость к механической, химической (в частности, окислительной) деструкции. Наиболее распространенный вид деструкции биополимеров – это разрушение их микроорганизмами как при хранении, так и при практическом использовании (например, в пластовой воде для повышения нефтеотдачи пластов). Таким образом, биологическая деструкция полисахаридов является препятствием для эффективного их применения. В то же время, экзополисахариды, синтезируемые Acetobacter и Cryptococcus, устойчивы к ней.
Кроме того, как показывает зарубежный опыт, современная технология получения биополимеров позволяет организовать их производство непосредственно на промыслах. Это может оказать решающее значение при оценке экономической целесообразности применения биополимеров. При этом полисахариды, синтезируемые на поверхности клеточной стенки микроорганизмов – экзополисахариды – представляют особый интерес [5].
1. Мищенко И.Т., Кондратюк А.Т. Особенности разработки нефтяных месторождений с трудноизвлекаемыми запасами. – М.: Нефть и газ, 1996. – 190 с.
2. Кудинов В.И., Сучков Б.М. Новые технологии повышения добычи нефти. – Самара, 1998. – 368 с.
3. Кукин В.В., Соляков Ю.В. Применение водорастворимых полимеров для повышения нефтеотдачи пластов. – М.: ВНИИОЭНГ, 1982. – 44 с.
4. Шевцов И.А., Кабо В.Я., Румянцева Е.А., Досов А.Н. Новые технологии применения полимерных реагентов в добыче нефти // Состояние и перспективы работ по повышению нефтеотдачи пластов: тез. докл. конф. ОАО НК «ЛУКОЙЛ», 1998. – с. 40–43.
5. Соболев К.А. Исследование биополимеров в качестве реагентов для нефтедобычи: диссертация на соискание ученой степени кандидата технических наук. – Москва, 2005
6. Толстых Л.И., Голубева И.А. Химические реагенты для идентификации добычи нефти. Ч. 1. Полимеры для повышения нефтеотдачи. – М.: РГУ нефти и газа, 1993. – 32 с.
7. Применение полимеров в добыче нефти/ Григоращенко Г.И., Зайцев Ю.В., Кукин В.В., и др. – М.: Недра, 1978. – 213 с.
8. Жданов С.А. Применение методов увеличения нефтеотдачи пластов: состояние и перспективы. – М.: Нефть и газ, 1998. – 19 с.
9. И.А. Швецов. Теоретические и практические основы применения полимеров для повышения эффективности заводнения нефтяных пластов: Дисс…докт. техн. наук. – М.: ВНИИ, 1979. – 365 с.
10.Пирог Т.П., Коваленко М.А., Кузьминская, Ю.В., Криштаб Т.П. – Интенсификация синтеза экзополисахарида этаполана на смеси ростовых культур // Микробиология. – 2003. – 72, №1. – с. 26 – 32.
11.Полимерные и углеводородные составы для повышения нефтеотдачи высокообводнённых пластов // Аюпов А.Г., Шарифуллин А.В. и др. // Нефтяное хозяйство, 2003. – №6. – с. 48–51.