Рассмотрим подробнее применение закона действия масс для реакций на поверхности. Для описания скорости элементарной стадии используют закон действия поверхностей. Если процесс определяется скоростью реакции двух поверхностных интермедиатов (Аадс + Вадс →, ZA + ZB →, 2ZA →) скорость такой стадии, например,
запишем через концентрации поверхностных веществ
Удельная скорость стадии (на 1 г катализатора)
где S – удельная поверхность, м2/г.
Выразим величины
где
Зная насыпную плотность катализатора (G, г/л), можно пересчитать скорость в молях на 1л катализатора в сек. В жидкофазных процессах с твёрдым катализатором обычно используют значения скорости на 1л раствора. Тогда G есть количество грамм тв. катализатора в 1л раствора
R = WG = kΘAΘB, моль·л–1·сек–1, (31)
где
Для однородной поверхности скорость реакции легко записать, выразив ΘA и ΘB через концентрации или парциальные давления реагентов А и В. В случае квазиравновесного приближения
(изотерма Лэнгмюра). Тогда, для стадии (27) получим
Такой тип уравнений называют уравнениями (или моделью) Лэнгмюра – Хиншельвуда и часто используют для описания кинетики гетерогенного катализа при решении прикладных задач. Кинетику реакций на неоднородных поверхностях рассмотрим в следующем разделе.
Методы вывода кинетических уравнений
Для вывода кинетических уравнений для скоростей по маршрутам и скоростей по веществам можно использовать три метода для стационарных и квазистационарных процессов:
Метод Боденштейна;
Условие стационарности стадий Хориути-Темкина;
Методы теории графов (для линейных механизмов).
Метод Боденштейна
Условие стационарности стадий (19) дает нам систему уравнений с S неизвестными (P + NI). Метод удобно использовать, когда много интермедиатов и мало маршрутов (например, P = 1).
Пример 5. Запишем систему
Используем веса стадий для значений Wj и доли поверхности для поверхностных концентраций, обозначив
Заменим
Используя метод определителей Крамера, получим
Уравнение (34) является искомым уравнением скорости реакции по первому маршруту для стехиометрического базиса маршрутов (
Пример 6.
Для примера 4 запишем систему
При сложении трех уравнений получим:
W1 = W5 W1 = k5[H·][C2H5·] (35)
Поскольку W3 и W4 >> W5 (условие длинных цепей)
W3 = W4+
Решая систему (25) и (26) относительно [Н·] и [С2Н5·], получим
Применение условия стационарности стадий (уравнение 19) для вывода кинетических уравнений рассмотрим на примере одномаршрутного механизма гетерогенной каталитической реакции.
Пример 7.
(1)
(2)
(3)
Согласно (19):
Имеем три уравнения и уравнение материального баланса
Преобразуем уравнение (38):
Первый сомножитель в знаменателе – следствие квазистационарности процесса, второй сомножитель есть закомплексованность катализатора (следствие учета материального баланса по катализатору). Если стадия (2) является лимитирующей стадией, то
В условиях квазиравновесия стадий (1) и (3) уравнение (41) можно получить, используя уравнение изотермы Ленгмюра:
и уравнение для скорости лимитирующей стадии
Для одномаршрутных линейных механизмов удобно использовать уравнение Темкина, если скорость реакции записывать через свободную концентрацию активного центра ([М] или Q0):
Для рассмотренного выше примера 7:
Найдя из уравнения (43) Q0, из скоростей второй стадии QА и QВ из скорости стадии (3), можно также получить уравнение (38):
Сложив Qi, получим
Применение теории графов в химической кинетике
А.А. Баландин, по-видимому, впервые указал на возможность использования графов при изучении механизмов сложных реакций. Он же впервые применил к механизмам реакции элементы топологии и предложил первую классификацию механизмов на топологической основе. Затем Христиансен применил графы для классификации механизмов, а Кинг и Альтман дали графическую интерпретацию метода Крамера решения систем линейных алгебраических уравнений и использовали ее для вывода кинетических уравнений ферментативных процессов.