Смекни!
smekni.com

Основы термодинамики (стр. 6 из 7)

Расхождение между этими двумя значениями связано с тем, что для получения одного моля пара необходимо испарить больше, чем 60 г СН3СООН, следовательно, мольная масса пара СН3СООН равна:

, отсюда легко сообразить, что пары уксусной кислоты в этом температурном интервале димеризованы примерно на 2/3.

Насыщенный пар обладает еще рядом интересных свойств. Рассмотрим некоторые из них.

Пусть в гетерогенной системе при температуре Т находится 1 моль вещества, причем в равновесии находятся m молей пара и 1-m молей жидкой фазы. Пусть теплоемкость пара Сп, жидкости Сж, изменяем температуру от Т до T+dT, при этом испаряется масса жидкости dm, тогда затраты тепла dQ можно представить в виде соотношения:

.

Разделим правую и левую части на Т, имеем:

.

Следовательно, справедливо:

,

после дифференцирования имеем

.

По уравнению Кирхгоффа

и
,

т.е. теплоемкость насыщенного пара не равна изобарной теплоемкости того же газообразного вещества.

Следует также иметь в виду, что введение постороннего (инертного) газа изменяет давление насыщенного пара при неизменной температуре, даже если газ не растворяется в жидкости. Это происходит вследствие влияния общего давления на свойства конденсированной фазы (возрастает ее мольная энергия Гиббса). Действительно, при T=const:

, где Рг – давление постороннего газа, Рж давление насыщенного пара, VжиVп-мольныеобъемы жидкости и пара. Поскольку по условию равновесияdGж =dGп, то:
.

Взятие интеграла от Рг = 0 до Ргприводит к уравнению:

Поскольку дробь Vж/Vnневелика (для воды при 373 К она равна 5,9∙10-4), то влияние постороннего газа сказывается только при высоких давлениях.

Например, для воды под давлением водорода при 373 К

25 200 600 1000
Эксп. 1,018 1,19 1,66 2,35
Расч. 1,015 1,12 1,35 1,802

Глава 7. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

7.1. Определения.

Раствором называется гомогенная, молекулярно-дисперсная система, состав которой можно изменять непрерывно в некотором конечном или бесконечном интервале.

По агрегатному состоянию растворы разделяются на твердые, жидкие и газообразные. Если растворитель и растворенное вещество имеют разные агрегатные состояния, то растворителем рассматривают обычно то вещество, агрегатное состояние которого совпадает с агрегатным состоянием раствора. Если же компоненты раствора и раствор имеют одинаковое агрегатное состояние, то за растворитель считают то вещество, которого больше, хотя для термодинамики это безразлично.

Состав раствора измеряется его концентрацией. Существуют следующие основные определения концентрации:

мольная доля (х) – число молей вещества в 1 моле раствора;

моляльность (m) – число молей растворенного вещества в 1000 г растворителя;

молярность (с) – число молей растворенного вещества в 1 л раствора;

массовое содержание (р) – число грамм растворенного вещества в 100 г раствора.

В основном мы будем пользоваться мольной долей. Очевидно, что

, а
.

Если М0 и М мольные массы растворителя и растворенного вещества, а d – плотность раствора, г/см3, то переход от одной концентрации к другой можно представить следующими формулами (раствор, естественно, бинарный):

7.2. Характеристические функции многокомпонентных систем.

Первый и второй законы термодинамики, из которых следуют фундаментальные уравнения, были получены для закрытых систем, т.е. систем, процессы в которых не приводят к изменению количества компонентов. Реально же чаще встречаются системы, в которых при различных процессах изменяются количества компонентов. Это может происходить, скажем, при фазовых превращениях или вследствие протекания химической реакции. При этом может изменяться состав, как отдельных частей, так и системы в целом.

Поэтому внутренняя энергия (и другие функции состояния) открытых систем будут изменяться не только за счет сообщения системе теплоты и произведенной системой работы, но и за счет изменения состава системы. Следовательно для открытых систем характеристические функции будут функциями не только их двух естественных переменных, но и функциями числа молей всех веществ , составляющих систему:

U = U ( S, v, n1……………….nk ),

H = H ( S, p, n1 ………….. nk ),

F = F ( T, v, n1…………… nk ),

G = G ( T, p, n1……………nk ).

Полный дифференциал внутренней энергии открытой системы можем записать как:
.

Индекс njiозначает, что число молей других веществ, кроме данного, не изменяется.

Но если открытая система изменяет свое состояние при постоянном составе (все ni =const), то она ничем не отличается от закрытой системы, поэтому:

и
.

Гиббс назвал частную производную

химическим потенциалом i – компонента.

Аналогично:

.

Поскольку HU + pV, FUTS, GUTS + pv, то dH = dU + pdV + Vdp, dF = dUTdSSdT, dG = dUTdSSdT + Vdp + pdV.

и подставив сюда

получаем:

Сравнив выражение для полных дифференциалов характеристических функций, получаем:

,

т.е. химический потенциал компонента равен приращению характеристической функции системы при добавлении одного моля данного компонента при условии, что естественные переменные и состав системы остаются постоянными, т.е. система достаточно велика.

7.3. Однородные функции. Уравнение Гиббса-Дюгема.

Функция многих переменных, например F(x,y,z), называется однородной функцией порядка k, если она обладает следующим свойством:

F (tx, ty, tz) = tk F (x, y, z),

(например,F = x3 +x2y + y2x + z3является однородной функцией 3-его порядка). Однородные функции обладают следующим свойством (теорема Эйлера):

.

Доказательство теоремы Эйлера следующее:

Если f = f (x1, x2,…xn ), а каждое xi=φ(t), то

.

Пусть F (x, y, z ) - однородная функция порядкаk, положимx = , y=, z = , тогда

.

Продифференцируем по t:

.

Положим t = 1,тогда α = x, β = y, γ = zи

, что и требовалось доказать.

Если температура и давление постоянны, то энергия Гиббса является функцией только числа молей компонентов: G = G (n1, n2, …nk ) и легко сообразить, что она является однородной функцией первого порядка относительно числа молей компонентов и по теореме Эйлера (k= 1):

.

После дифференцирования имеем:

.

Но

, а при p, T =const
.