Смекни!
smekni.com

Основы термодинамики (стр. 4 из 7)

Дифференцирование по температуре, разделение переменных и интегрирование в интервале от Т1 до Т2 дают (р = const):

и

уравнение Кирхгоффа

Аналогично для ΔU и Cv.

Глава 4. Второй закон.

4.1. Определение.

Каждая термодинамическая система обладает функцией состояния -энтропией. Энтропия процесса вычисляется следующим образом. Система переводится из начального состояния в соответствующее конечное состояние через последовательность состояний равновесия, вычисляются все подводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т источника теплоты и все полученные таким образом значения суммируются:

и
.

При реальных (неидеальных) процессах энтропия замкнутой (изолированной) системы возрастает

, т.е.
.

Энтропия – способность к превращению (Клаузиус)

По I закону

и для идеального газа

и
.

, т.е. для идеального газа
обладает свойствами полного дифференциала, т.е. S есть функция состояния.
Распространение
на все системы и есть II закон

4.2. Другие формулировки

Тепло не может само по себе перейти от системы с меньшей температурой к системе с большей температурой (Клаузиус).

Невозможно получать работу, только охлаждая отдельное тело ниже температуры самой холодной части окружающей среды (Кельвин).

4.3. Обратимые и необратимые процессы.

Процесс называется равновесным, если в прямом и обратном направлении проходит через одни и те же состояния бесконечно близкие к равновесию. Работа равновесного процесса имеет максимальную величину по сравнению с неравновесными процессами и называется максимальной работой.

Если равновесный процесс протекает в прямом, а затем в обратном направлении так, что не только система, но и окружающая среда возвращается в исходное состояние и в результате процесса не остается никаких изменений во всех участвовавших в процессе телах, то процесс называется обратимым.

Обратимый процесс – такая же абстракция, что и идеальный газ.

Крайние случаи необратимых процессов: переход энергии от горячего тела к холодному в форме теплоты при конечной разнице температур, переход механической работы в теплоту при трении, расширение газа в пустоту, диффузия, взрывные процессы, растворение в ненасыщенном растворе.

Эти необратимые процессы идут самопроизвольно без воздействия извне и приближают систему к равновесию.

4.4. Изменение энтропии в различных процессах.

, причем знак = относится к обратимым процессам, а знак > к необратимым.

Если требуется вычислить энтропию необратимого процесса необходимо провести обратимый процесс между теми же самыми конечным и начальным состоянием (используем тот факт, что энтропия – функция состояния).

а) Изотермический процесс:

, Q – часто это скрытая теплота фазовых переходов.

б) Изменение температуры при

:

, следовательно
, т.к.

Энтропия необратимого процесса:

Теплота конденсации при 298 К равна – 10519 кал,

Ответ, очевидно, неверен, поскольку процесс необратимый. Проведем его обратимо:

(-9769 – теплота конденсации при 373 К)

Заметим, что действительно

меньше, чем
.

4.5. Закон Джоуля

,

– это полный дифференциал, следовательно
.

,

.

Для идеального газа

и
,

Для любых систем

,

Для газа Ван-дер-Ваальса

и
.

4.6. Постулат Планка. Абсолютная энтропия.

Зададимся вопросом, каково изменение энтропии некоего процесса, который протекает при температуре около абсолютного нуля. Например, имеем две кристаллические модификации металлического олова: низкотемпературную, α - Sn, и высокотемпературную – обычное белое олово, β – Sn. Они находятся в равновесии при 14 0С (287 К), теплота равновесного превращения 497 кал/моль, а энтропия его

Легко сообразить, чтобы дать ответ на поставленный вопрос, необходимо взять β – Sn при 0 К, нагреть до температуры 14 0С, равновесно превратить β – Sn в α – Sn, и затем охладить α – Sn до абсолютного нуля, тогда суммарное изменение энтропии будет:

,

т.е. изменение энтропии в пределах ошибок опыта равно нулю, а отсюда следует, что энтропии α – Sn и β – Sn одинаковы.

Исходя из многочисленных подобных экспериментов (мы их обсудим позднее в гл.16), Планк выдвинул постулат: энтропия идеального кристаллического тела при абсолютном нуле равна нулю.

Абсолютные энтропии веществ, измеренные экспериментально или вычисленные теоретически, приводятся в справочниках термодинамических величин (где и теплоты образования).

Глава 6. Равновесие в однокомпонентных гетерогенных системах.

Уравнение Клапейрона – Клаузиуса

6.1. Определения.

Фазой называется совокупность частей системы, обладающих одинаковыми термодинамическими свойствами. Система, состоящая из одной фазы, называется гомогенной, из двух или более – гетерогенной. Фаза более общее понятие, чем индивидуальное вещество. Система может состоять из одного вещества, но быть гетерогенной (вещество находится в системе в виде разных агрегатных состояний или кристаллических модификаций). Система может быть гомогенной, но содержать несколько химических соединений, пример этого – растворы.

Назовем составляющими веществами системы такие химические соединения, которые могут быть выделены из системы, и существовать отдельно от нее. Назовем независимыми компонентами такие составляющие вещества, концентрации которых могут изменяться независимо. Если в системе не протекают химические реакции, то все вещества, составляющие систему, являются независимыми компонентами.

Но в случае фактического протекания химических реакций концентрации только части веществ могут изменяться независимо, поэтому число независимых компонентов равно числу составляющих веществ минус число химических реакций, которые фактически протекают в системе.