Очевидно, что внутренняя энергия состоит из энергии поступательного и вращательного движения молекул, колебательного движения атомов, межмолекулярного взаимодействия, внутриатомной энергии заполнения электронных уровней, внутриядерной.
При росте температуры внутренняя энергия растет. При взаимодействии системы с окружающей средой происходит обмен энергией. Способ передачи энергии, связанный с изменением внешних параметров системы называется работой. Способ передачи без изменения внешних параметров называется теплотой, а процесс передачи теплообменом.
Количество энергии, переданное системой с изменением внешних параметров, называется работой А. Работа – способ передачи упорядоченного движения.
Работа и теплота Qне являются видами энергии, а характеризуют лишь способ передачи энергии, т.е. процесс. Состоянию системы не соответствует какое-либо значение А или Q. Мы будем считать, что A > 0, если система совершает работу против сил сопротивления внешней среды, и Q > 0, если энергия передается системе. Теплоту и работу измеряем в одних единицах.
2.3. I закон.
Любая термодинамическая система обладает функцией состояния – внутренней энергией. Эта функция состояния возрастает на величину сообщенного системе количества тепла dQ и уменьшается на величину совершенной системой внешней работы dA. Для замкнутой системы справедлив закон постоянства энергии.
dU = dQ – dA (1).
(2) превращается в
(3). U,Qи А имеют одинаковую размерность.2.4. Работа расширения.
Пусть наша система характеризуется только одним внешним параметром объемом V. Давление Р характеризует взаимодействие системы с внешней средой и измеряется силой, отнесенной к единице поверхности. Если система находится в равновесии, то давление одинаково во всех частях системы и равняется внешнему давлению. Тогда работа изменения объема системы:
, , - зависит от р=р(V).
V = Const, то dV = 0, dA=0, то A=0, т.е. ΔU = , в этом случае тепловой эффект
равен изменению функции состояния.p = Const, то
; T = Const, то . В этом случае необходимо знать уравнение состояния системы .Если система - идеальный газ, то
, поскольку pV = nRT, А в связи с тем, что при T=constp1V1 = p2V2.R = 0,082
Это стоит запомнить.Кроме того, при Т = Const для идеального газа U = Const, dU = 0, A = Q, т.е. все тепло, полученное идеальным газом, перешло в работу.
Для адиабатического процесса dQ = 0 (Q = 0), dU = -dA, -ΔU = Aт.е. положительная работа совершается за счет уменьшения U.
2.5. Теплота и теплоемкость.
Теплоемкостью системы называется отношение количества тепла, сообщенного системе в каком-либо процессе, к соответствующему изменению температуры:
1 кал = 4,1840 дж, 1 дж = 107 эрг (СИ)Поскольку Q-функция процесса, то
, а , .Связь между Ср и Сv для любых систем найдем следующим образом.
dQ = dU + pdVI закон.
Выберем в качестве независимых переменных объем и температуру, тогда внутренняя энергия:
и ,а
.Разделим правую и левую части на dT, получим:
.Отношение
есть отношение приращений независимых переменных, то есть величина неопределенная, и чтобы снять неопределенность, необходимо указать характер процесса. Пусть процесс изохорный.V = Const
и =СV.Отсюда
.Далее при p = Const
= СрИ для любых систем
.Для идеальных газов
(Строго докажем при II законе).А поскольку pV = RT, то
.Заметим, что
– работа, которую совершает система, преодолевая внутренние силы сцепления. Производная имеет размерность давления и называется внутренним давлением.2.6. Уравнение адиабаты идеального газа.
dQ = dU + pdV.
Для идеального газа dU = CVdT, следовательно, dQ = CvdT + pdV, и если процесс адиабатический dQ = 0, то
, , где .CV и Cp для идеального газа не зависят от температуры:
,Поскольку
, то Уравнение ПуассонаГлава 3. Термохимия.
3.1 Энтальпия.
Если система характеризуется только одним внешним параметром V, т.е. может совершаться только работа расширения, тогда первый закон может быть записан в виде:
.Если
т.е. тепловой процесс эффекта равен изменению функции состояния. Найдем такую функцию состояния, изменение которой равно тепловому эффекту при постоянном давлении. Для этого выражение для I закона необходимо преобразовать так, чтобы давление находилось под знаком дифференциала. Обратим внимание, чтоd(pV) = pdV + Vdp и pdV = = d(pV) – Vdp, а подстановка в выражение для I закона дает: