Очевидно, что внутренняя энергия состоит из энергии поступательного и вращательного движения молекул, колебательного движения атомов, межмолекулярного взаимодействия, внутриатомной энергии заполнения электронных уровней, внутриядерной.
При росте температуры внутренняя энергия растет. При взаимодействии системы с окружающей средой происходит обмен энергией. Способ передачи энергии, связанный с изменением внешних параметров системы называется работой. Способ передачи без изменения внешних параметров называется теплотой, а процесс передачи теплообменом.
Количество энергии, переданное системой с изменением внешних параметров, называется работой А. Работа – способ передачи упорядоченного движения.
Работа и теплота Qне являются видами энергии, а характеризуют лишь способ передачи энергии, т.е. процесс. Состоянию системы не соответствует какое-либо значение А или Q. Мы будем считать, что A > 0, если система совершает работу против сил сопротивления внешней среды, и Q > 0, если энергия передается системе. Теплоту и работу измеряем в одних единицах.
2.3. I закон.
Любая термодинамическая система обладает функцией состояния – внутренней энергией. Эта функция состояния возрастает на величину сообщенного системе количества тепла dQ и уменьшается на величину совершенной системой внешней работы dA. Для замкнутой системы справедлив закон постоянства энергии.
dU = dQ – dA (1).
(2) превращается в
2.4. Работа расширения.
Пусть наша система характеризуется только одним внешним параметром объемом V. Давление Р характеризует взаимодействие системы с внешней средой и измеряется силой, отнесенной к единице поверхности. Если система находится в равновесии, то давление одинаково во всех частях системы и равняется внешнему давлению. Тогда работа изменения объема системы:
,
,
- зависит от р=р(V).
V = Const, то dV = 0, dA=0, то A=0, т.е. ΔU = , в этом случае тепловой эффект
p = Const, то
Если система - идеальный газ, то
R = 0,082
Кроме того, при Т = Const для идеального газа U = Const, dU = 0, A = Q, т.е. все тепло, полученное идеальным газом, перешло в работу.
Для адиабатического процесса dQ = 0 (Q = 0), dU = -dA, -ΔU = Aт.е. положительная работа совершается за счет уменьшения U.
2.5. Теплота и теплоемкость.
Теплоемкостью системы называется отношение количества тепла, сообщенного системе в каком-либо процессе, к соответствующему изменению температуры:
Поскольку Q-функция процесса, то
Связь между Ср и Сv для любых систем найдем следующим образом.
dQ = dU + pdVI закон.
Выберем в качестве независимых переменных объем и температуру, тогда внутренняя энергия:
а
Разделим правую и левую части на dT, получим:
Отношение
V = Const
Отсюда
Далее при p = Const
И для любых систем
Для идеальных газов
А поскольку pV = RT, то
Заметим, что
2.6. Уравнение адиабаты идеального газа.
dQ = dU + pdV.
Для идеального газа dU = CVdT, следовательно, dQ = CvdT + pdV, и если процесс адиабатический dQ = 0, то
CV и Cp для идеального газа не зависят от температуры:
Поскольку
Глава 3. Термохимия.
3.1 Энтальпия.
Если система характеризуется только одним внешним параметром V, т.е. может совершаться только работа расширения, тогда первый закон может быть записан в виде:
Если
d(pV) = pdV + Vdp и pdV = = d(pV) – Vdp, а подстановка в выражение для I закона дает: