Смекни!
smekni.com

Основы биохимии белков и аминокислот в организме человека (стр. 2 из 2)

Вторая группа - ферменты. для которых металл служит мостиком между белковым компонентом и субстратом и непосредственно выполняет каталитическую функцию.

Природные пептиды. Низкомолекулярные пептиды, естественно встречающиеся в организме и обладающие специфическими функциями. Разделяются:

1. Пептиды, обладающие гормональной активностью (вазопрессин, окситоцин, адренокортикотропный гормон)

2. Пептиды, принимающие участие в пищеварении (гастрин, секретин)

3. Имеющие своим источником a2-глобулярную фракцию крови (ангиотензин, брадикинин, калидин).

4. Нейропептиды.

Структура белка:

Каждый белок имеет в своем составе известное количество аминокислот, соединенных между собой в строго зафиксированной последовательности с помощью пептидных связей. Эта уникальная, специфичная для каждого белка последовательность АК определена как первичная структура белка.

Установлено, что полипепептидная цепь находится в молекуле белков в закрученном состоянии в виде альфа-спирали. Спирализация обеспечивается водородными связями, которые возникают между остатками карбоксильных и аминных групп, расположенных на противоположных витках спирали. Это- вторичная структура белка.

Пространственная упаковка альфа-спирали определяется как третичная структура белка. Основным видом связи, удерживающим спирали в определенном положении, является дисульфидная связь, которая возникает между двумя молекулами цистеина на разных участках спирали. Третичную структуру белка также стабилизируют различные ковалентные связи, силы Ван-дер-Ваальса. В зависимости от пространственного расположения полипептидных цепей (третичной структуры) молекулы белка могут иметь различную форму. Если полипептиды уложены в виде клубка, то такие белки называются глобулярными. Если в виде нитей – фибриллярными.

Четвертичная структура белка – это несколько индивидуальных полипептидных цепей, определенным образом связаны друг с другом (например, гемоглобин). Термином субъединица принято обозначать функционально активную часть молекулы белка. Многие ферменты состоят из двух или четырех субъединиц. Благодаря различным сочетаниям субъединиц фермент существует в нескольких формах – изоферментах.

Все белки обладают гидрофильными свойствами, т.е. имеют большое сродство к воде. Устойчивость белковой молекулы в растворе обусловлена наличием определенного заряда и водной (гидратной) оболочки. В случае удаления этих двух факторов белок выпадает в осадок. Данный процесс может быть обратимым и необратимым. Обратимое осаждение белков (высаливание) - белок выпадает в осадок под действием определенных веществ. после удаления которых вновь может возвращаться в свое исходное нативное (природное) состояние. Необратимое осаждение характеризуется значительными внутримолекулярными изменениями структуры белка, что приводит к потере им нативных свойств. такой белок - денатурированный, процесс - денатурация.

Таким образом, под денатурацией следует понимать изменение уникальной структуры нативной молекулы белка, приводящее к потере характерных для нее свойств (растворимости, электрофоретической подвижности, биологической активности).

Большая часть белковых молекул сохраняет свою биологическую активность только в пределах очень узкой области, температуры, рН В нормальных условиях температуры и рН полипептидная цепь белка обладает только одной конформацией, которая носит название нативной. Стабильность ее высока, что позволяет выделить и сохранить белок. Большинство белков можно полностью осадить из водного раствора при добавлении трихлоруксусной и хлорной кислоты, которые образуют с белками кислотонерастворимые соли. Белки можно осадить и с помощью катионов (Zn2+ или Pb2+).

При денатурации свойственная белкам биологическая активность утрачивается. Поскольку известно, что при денатурации не происходит разрыва ковалентных связей пептидного остова белка, был сделан вывод, что причиной денатурации является развертывание полипептидной цепи, которая в нативной белковой молекуле характерным образом свернута. В денатурированном состоянии полипептидные цепи образуют случайные и беспорядочные петли и клубки. Ренатурация денатурированного белка – процесс не требующий химической энергии извне, этот процесс происходит самопроизвольно при значении рН и t, обеспечивающих стабильность нативной формы.

Аминокислоты отличаются друг от друга химической природой радикала (R). Почти все a-амино- и a-карбоксильныые группы участвуют в образовании пептидных связей белковой молекулы.

Рациональная классификация АК основана на полярности радикалов, выделяют 4 класса АК:

1. неполярные или гидрофобные

2. полярные (гидрофильные) незаряженные

3. отрицательно заряженные

4. положительно заряженные

Общие свойства аминокислот:

Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов. Будучи растворенными в воде они способны вращать плоскость поляризованного луча. Около половины АК правовращающие (+), а половина– левовращающие(-).

Стереохимию АК оценивают исходя из абсолютной конфигурации всех четырех замещающих групп, расположенных вокруг асимметрического атома углерода. Существуют L и D – стереоизомеры.

Основные физико-химические свойства АК:

Высокая вязкость растворов, незначительная диффузия, способность к набуханию в небольших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление, поглощение в УФ области при 280 нм.

Число различных типов белков у всех видов живых организмов составляет величину порядка 1010-1012. Аминокислот всего 20. Число сочетаний огромно.

Например дипептид АВ и ВА. Для трипептида – 6 сочетаний, четырехпептида – 24.

Стереоизомерия АК. Аминокислоты могут существовать в различных стереоизомерных формах – они отличаются друг от друга различной пространственной ориентацией групп, присоединенных к a-углеродному атому.

Lи D стереоизомеры – это два несовместимых при наложении зеркальных отображения – энактомеры. В состав белков входят только L-АК.

Взаимопревращение L®Dпроцесс рацимеризации.

Равновесие смещено к L –в живых и к D после смерти организма.

Полипептидные цепи могут содержать сотни АК звеньев, причем белковая молекула может состоять либо из одной, либо из нескольких полипептидных цепей. Однако белковые молекулы – это не беспорядочно построенные полимеры различной длины, каждый тип белка обладает особым, свойственным только ему химическим составом, определенным молекулярным весом и специфической последовательностью АК остатков.

Белковая молекула любого типа в нативном состоянии обладает характерной для нее пространственной структурой, конформацией, в зависимости от нее белки разделяются на фибриллярные и глобулярные.

Помимо 20 обычных имеются несколько редких АК - они являются производными от обычных АК. Эти АК входят в состав белков, но отличаются от обычных АК в генетическом смысле, т.к. для них не существует кодирующих триплетов. Они возникают путем модификации исходных АК уже после того как эти АК-предшественники включатся в полипептидную цепь. Существуют еще свыше 150 АК, которые встречаются в различных клетках и тканях либо в связанном состоянии, но никогда не встречаются в составе белков. Некоторые из них играют роль предшественников продуктов метаболизма. Аминокислоты, встречающиеся в грибах и высших растениях отличаются исключительным разнообразием и необычной структурой. Роль их в обмене веществ неизвестна, некоторые из них токсичны для других форм жизни.

Высшие позвоночные животные способны синтезировать далеко не все АК. Высшие животные для синтеза заменимых аминокислот могут использовать аммонийные соединения N, но не нитриты, нитраты или N2. Жвачные животные могут использовать нитриты и нитраты, которые восстанавливаются до аммиака бактериями рубца. Высшие растения способны сами создавать все АК, необходимые для синтеза белка, используя и аммиак и нитраты. Бобовые растения фиксируют молекулярный азот атмосферы, превращая его в аммиак и синтезируя далее АК. Грибы и бактерии также используют нитриты и нитраты.

Существует множество химических реакций, характерных для a-амино- и a-карбоксильных групп АК.


ЛИТЕРАТУРА

1. Мецлер Д. Биохимия. Т. 1, 2, 3. “Мир 2000

2. Ленинджер Д. Основы биохимии. Т.1, 2, 3. “Мир”2002

3. Фримель Г. Иммунологические методы. М. “Медицина 2007

4. Медицинская электронная аппаратура для здравоохранения. М2001

5. Резников А.Г. Методы определения гормонов. Киев “Наукова думка2000

6. Бредикис Ю.Ю. Очерки клинической электроники. М. “Медицина1999