Смекни!
smekni.com

Применение сингулярной матрицы в химии (стр. 2 из 2)

С использованием матриц следующую систему линейных урав­нений можно записать в виде:

Для дальнейшего упрощения выражения запишем матрицу поглощения (А) как произведение матриц коэффициентов экстинкции (

) и концентрации (С):

(A) = (

) (C)

Следует отметить, что матричные расчеты и их компьютерное применение дали тол­чок быстрому развитию многомерного анализа данных.

2.3. Свойства сингулярной матрицы

Матрица (X—Х)'(Х—

) —квадратная, симметричная и положи­тельно определенная. Такие матрицы проявляют некоторые свой­ства, особенно полезные при анализе данных:

· собственные значения, действительные, а также положитель­ные или равные нулю;

· число ненулевых собственных значений равняется рангу мат­рицы;

· два собственных вектора, связанные с двумя различными соб­ственными значениями ортогональны.

В качестве иллюстрации этих свойств, а также чтобы пока­зать их важность при анализе данных можно взять матрицу дисперсий-ковариаций и определим собственные значения матрицы

методом наименьших квадратов.

Решая уравнение, получаем два собственных значения:

= 0
,

что дает

=1 и
=0,6.

Как

, так и
действительны и положительны. Ранг матрицы должен равняться 2, поскольку в системе существуют два ненуле­вых собственных значения. Компоненты собственных векторов, связанные с каждым из собственных значений, получаем из опре­деления собственных векторов следующим образом:

для первого собственного значения

для второго собственного значения

Отметим, что два связанных с каждым из собственных зна­чений вектора действительно ортогональны (т. е. их скалярное произведение равно нулю). В этих двух наборах векторов мы можем выбрать два нормированных вектора, которые соответствен­но составляют ортогональный базис:

Векторы

и
действительно аналогичны тем, которые опре­делены в разделе 5.2.1, а координаты матрицы данных относитель­но этой точки отклика уже вычислены:

(Y) = (X-

) (U)

Заключение

Факторные методы (в том числе связанные с использованием сингулярных матриц) ныне широко применяются для анализа дан­ных в химии. Они в основном носят описательный характер и позволяют существенно сократить размерность массива данных при минимальной потере информации и возможности их графи­ческого представления.

Хотя эти методы и не обладают возможностями моделирования, как регрессионный анализ, их можно применять для идентифи­кации:

· компонентов в многокомпонентных смесях, проанализирован­ных посредством ультрафиолетового, инфракрасного и видимого излучения, флюоресценции, масс-спектрометрии, хроматографии (ФА);

· реальных физических факторов, управляющих эксперименталь­ными данными (целевой факторный анализ):

· группы, к которой можно отнести новый объект в системе ис­ходных групп, на которые был классифицирован первоначальный набор данных (ФДА).

Известная мысль А.Пуанкере о том, что в конечном счёте главной задачей науки является экономия мысли и труда, со всей очевидностью проявилась в разработке в 80-90-х годах ХХ века компьютерных программ для упрощения расчетов, связанных с сингулярными матрицами.

Действительно, в настоящее время химик, желающий применить эти методы к соб­ственным массивам данных, имеет возможность широкого выбора имеющихся в продаже программ для компьютеров. Множество программ было написано для больших, мини- и в последнее время — микрокомпьютеров.

Однако нельзя упустить из виду, что хорошая интерпретация результатов невозможна без знания физико-химических моделей, которые позволяют правильно поставить эксперимент и получить необходимые данные. Следовательно, участие человека будет все еще незаменимо в извлечении полезной информации из распечаток (листингов) с численными результатами и графиками.

Вмешательство химика происходит на различных стадиях:

· при выборе исходных наборов данных, которые корректно представляют все множество исследуемых объектов;

· выборе удовлетворительных методов преобразования данных;

· поиске физического смысла абстрактных факторов;

· интерпретации относительных положений объектов;

· классификации.

Применительно к ближайшему будущему можно выделить два основных параллельных направления развития приложений факторных методов в химии: первое, связано с развитием области применения; второе — с развитием программных средств и совер­шенствованием методик.

Факторный анализ можно применять:

· для завершения многокомпонентного анализа в частотной области, сравнения спектров и библиотечного поиска, улучшения методик хроматографического определения и т. д.;

· анализа сложных промышленных процессов с большим коли­чеством данных, для которых нельзя создать чистой фундамен­тальной модели. Факторный анализ этих наборов данных будет первой ступенью в моделировании указанных процессов;

· изучения взаимосвязи структуры с физико-химическими свой­ствами, такими, как реакционная способность, биологическая активность органических, неорганических и биоорганических соединений;

· рассмотрения химических процессов в окружающей среде с учетом географических и климатических особенностей регионов.

С развитием программных средств и совершенствованием методик факторные методы будут становиться все проще для использования неспециалистами. Отметим здесь только некоторые тенденции:

· интеграция доступных программных средств со множеством вспомогательных программ представления данных, предваритель­ной их обработки, факторного анализа, моделирования, решения задач оптимизации и распознавания образов. Эти средства будут поставлены на персональных компьютерах, что удобно для хими­ков. Более того, они станут частью автоматизированных систем сбора и обработки данных физико-химического анализа;

· включение в программные средства модулей для проверки предположения о линейности при выборе исходных переменных как непосредственно по экспериментальным результатам, так и по выбранным соотношениям между переменными;

· включение в программные средства модулей оценки погреш­ности факторных нагрузок, что поможет аналитику оценить реальность выявленных факторов. Целесообразна разработка ста­тистических тестов для использования при решении об отнесении нового объекта к одной из групп;

· использование одновременной обработки многопараметриче­ских наборов данных, что позволит сопоставить методы много­компонентного анализа, а при обработке массивов данных, завися­щих от времени,— исследовать эволюцию химических процессов;

· введение в программное обеспечение концепции искусственно­го интеллекта. Это поможет аналитику в интерпретации резуль­татов, анализе геометрического представления объектов, а в даль­нейшем — в автоматическом моделировании групп и кластеров объектов.

Список используемой литературы

1. ЭВМ помогает химии: Пер. с англ. /Под ред. Г. Вернена, М. Шанона.— Л.: Химия, 1990.— Пер. изд.: Вели­кобритания, 1986. - 384 с.

2. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов/Пер, с англ. - М.: Наука. Гл. ред. физ.-мат. лит., 1986. - 232 с.