Наиболее перспективно использование ТiO2 для очистки сточных вод в накопительных резервуарах и отстойниках. Показано, что пестициды, используемые в сельском хозяйстве, в водоемах разрушаются в течение нескольких месяцев. Добавление небольших количеств безвредного ТiO2 позволяет сократить это время до нескольких дней без использования искусственных источников света, так как процесс идёт под действием солнечного света.
Существующие проточные реакторы для очистки воды от органических примесей используют гомогенные фотокатализаторы типа солей железа, при этом в воду добавляется и окислитель — перекись водорода. В общих чертах механизм действия такой системы можно описать следующим образом:
Fe2+ + H2O2→ Fe3+ + OH- + OH,
Fe2+ + OH →Fe3+ + OH-,
OH + H2O2 →HO2 + H2O,
HO2 + Fe3+ →Fe2+ + H+ + O2,
Раствор перекиси водорода и соли железа называют реагентом Фентона. Как видно, в ходе процесса разложения перекиси водорода образуется ОН-радикал, который является сильнейшим окислителем. Эта частица и ответственна за окисление органических соединений в растворе. Под действием света скорость процесса окисления может увеличиться в десятки и даже сотни раз; система носит название "Фото-Фентон". И хотя механизм действия света еще окончательно не понят, система уже нашла практическое применение из-за простоты, высокой эффективности и экономичности. В частности, технологическое оборудование для очистки сточных вод по методу "Фото-Фентон" поставляется фирмой "Calgon Carbon Oxidation Technologies", USA.
Супромолекулярная фотохимия
Успехи в области молекулярной фотохимии позволили перейти к практическому решению таких глобальных задач, как создание искусственных молекулярных фотокаталитических систем для конверсии солнечной энергии в химическую, запись, хранение и переработка информации, создание экологически чистых фототехнологий получения веществ.
Исследования процессов, протекающих в биосистемах, показывают, что их высокая эффективность связана не столько с уникальностью молекул, участвующих в том или ином процессе (например, родопсина в зрительном восприятии информации или хлорофилла при фотосинтезе), сколько со сложной структурной и функциональной организацией разнообразных компонентов биосистемы - супрамолекулярным уровнем организации материи. По-видимому, именно супрамолекулярный уровень организации вещества в биосистемах и обеспечивает эффективное выполнение ими сложных функций, в частности, по преобразованию солнечной энергии в химическую, получению и переработке информации. По образному выражению нобелевского лауреата по химии за 1987 год Ж.-М. Лена, для того чтобы прочитать книгу жизни, то есть понять химические принципы функционирования биосистем, недостаточно знать буквы алфавита (атомы химических элементов) и уметь складывать из них отдельные слова (индивидуальные молекулы), необходимо понимать смысл всего предложения, зависящий от структурного расположения слов в предложении (супрамолекулярная система).
Успехи в развитии молекулярной химии, с одной стороны, и клеточной биологии - с другой, определили формирование и интенсивное развитие в конце XX века нового, пограничного (с точки зрения структурной организации вещества) направления - супрамолекулярной химии. Точно так же как взаимодействие атомов химических элементов приводит к образованию различных молекул, так и взаимодействие молекулярных компонентов может приводить к образованию супрамолекулярных структур - супрамолекул. Следует отметить, что до настоящего времени нет общепринятого, строгого определения супрамолекулярных частиц. Это связано с большим многообразием различных типов взаимодействий между компонентами супрамолекул (водородная связь, ван-дер-ваальсово, донорно-акцепторное, ион-ионное взаимодействие) и как следствие этого - большим разнообразием супрамолекулярных систем. Тем не менее основным признаком, позволяющим отделить супрамолекулы от обычных больших молекул, является возможность выделения в супрамолекулярных системах индивидуальных молекулярных компонентов (структурных единиц супрамолекулы), способных к самостоятельному существованию. Такие компоненты (называемые активными компонентами супрамолекулы) характеризуются своим электронным строением и как следствие этого - своим набором физико-химических свойств, которые при их участии в супрамолекулах в значительной степени сохраняются. Это не означает, конечно, что свойства супрамолекул являются простой суперпозицией свойств активных компонентов. Наоборот, наличие в супрамолекулах нескольких компонентов приводит к появлению качественно новых свойств, прежде всего связанных с процессами переноса электрона и энергии между компонентами. Именно изучение новых фотохимических и фотофизических свойств супрамолекул и является объектом исследования супрамолекулярной фотохимии.
Сочетание в супрамолекулах основных свойств их активных компонентов (которые могут быть предварительно изучены) и новых свойств, связанных с процессами переноса электрона и энергии между ними, открывает широкие возможности конструирования искусственных супрамолекулярных систем, способных при фотовозбуждении осуществлять направленный перенос заряда и энергии - своеобразных фотохимических молекулярных устройств. Создание электронных устройств на основе супрамолекул обеспечивает как увеличение их быстродействия, так и уменьшение потребляемой при их работе мощности (ярким примером является развитие компьютеров). Размер современных сверхбольших интегральных схем, содержащих ~106 схемных элементов (транзисторов, диодов, резисторов), встроенных в поверхностный слой кристалла кремния и функционирующих как единое целое, достигает 1 мкм. В то же время, по оценкам некоторых специалистов, при трехмерной архитектуре применение молекулярных компонентов цепей с промежутками порядка 10-2 мкм обеспечило бы в миллион раз большую компактность, чем достижимая ныне.
Создание таких молекулярных электронных и оптоэлектронных устройств на основе супрамолекулярных систем, молекулярные компоненты которых обеспечивали бы выполнение сложных функций направленного переноса заряда или энергии (аналогично полупроводниковым интегральным схемам и оптоэлектронным устройствам), напрямую зависит от развития как самой супрамолекулярной химии, так и фотохимии супрамолекулярных систем.
Список использованной литературы и Интернет-ресурсов
1. http://www.xumuk.ru/encyklopedia/2/4903.html
2.tp://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/FOTOHIMIYA.html#1004604-L-106
3. http://ru.wikipedia.org/wiki/
4. http://n-t.ru/ri/kk/hm17.htm
5. http://allchem.ru/pages/encyclopedia/1427
6.ttp:www.orelsau.ru/index.php?faculty=0&chair=0&page=0&unit=63&page_sk=50
7. В.В. Поляков, С.П. Мирошниченко Методическое пособие по курсу «Бытовая электроника». Основы ксерокопирования. Таганрог: Изд-во ТРТУ, 2000. 40 с.
8. http://ru.wikipedia.org/wiki/Фотохромизм
9. http://femto.com.ua/articles/part_2/4385.html
10.http://student.km.ru/ref_show_frame.asp?id=2FBD5A77DED9498BACF0A1D1128A868B
11.http://www.nanometer.ru/2007/08/23/laser_3945.html
12.http://www.nanometer.ru/2007/05/29/nanoparticle.html
13.http://www.aerolifeshop.ru/clean_4.html
14.Детлаф А. А., Яворский Б. М. "Курс физики". Москва, изд-во Academa, 2003. 720 c.
15.Новости мирового атомного рынка, информационно-аналитический бюллетень 4.2009
16.Комов В. П., Шведова В. Н. "Биохимия". Москва, изд-во Дрофа, 2006. 638
17.http://www.pereplet.ru/obrazovanie/stsoros/627.html