Правила Томпсона:
· для одноатомных и всех веществ с нормальной температурой кипения
K ;· для других соединений
;· для веществ, нормальная температура кипения которых выше 250 K, рекомендуется принимать C = 43 K;
· для низкокипящих газов C ® 0.
Другая, более употребительная форма корреляции Кокса-Антуана получена дифференцированием уравнения (7.7) по 1/T и сочетанием полученной зависимости с уравнением Клаузиуса-Клапейрона (7.3). Для нормальной точки кипения константы “A” и “B” выразятся в этом случае следующим образом:
;
(7.8)
при
,где Pvp выражено в физических атмосферах.
Для использования уравнений (7.8) необходимо знать только
при Tb и Tb.. В соответствии с рекомендацией Миллера [5] для большинства веществ в области низких давлений может быть принято ~ 1,05.Уравнение Ренкина, которое также иногда называют уравнением Кирхгофа, получено интегрированием уравнения Клаузиуса-Клапейрона в приближении
=const и :.(7.9)
Уравнение Ренкина используется для аппроксимации экспериментальных данных, которые не отличаются высокой точностью, вследствие чего прочие дополнительные члены P-T зависимости оказываются незначимыми.
Ридель предложил корреляцию давления паров, основанную на модификации уравнения (7.9):
.(7.10)Член T6 намеренно включен в корреляцию для учета того, что значение vZ не равно единице при высоких температурах и
также не является линейной функцией в этой области. Показатель степени “6” при T не играет существенной роли - могут использоваться и другие числа без особого влияния на точность расчета. В отечественной практике используется уравнение.(7.11)
Теоретическая аргументация применения этого уравнения дана А.Н.Корниловым.
В группе трехпараметрических корреляций для прогнозирования P-T данных довольно широкое применение нашло разложение Питцера
(7.12)с аналитическим представлением функций
и , выполненным Ли и Кеслером:;(7.13)
,(7.14)
где
- приведенное давление насыщенного пара, равное давлению насыщенного пара, деленному на критическое давление , а - ацентрический фактор. Величину ацентрического фактора при использовании корреляции Ли-Кеслера целесообразно также вычислять по уравнению Ли-Кеслера (5.7).Преимущества корреляции Ли-Кеслера очевидны. Однако необходимо помнить, что универсальных подходов к описанию P-T данных в настоящее время не выработано, поэтому результаты прогнозирования для одних соединений могут быть очень хорошими, для других - только удовлетворительными. То же можно сказать и для различных температурных диапазонов применительно к одному и тому же соединению. В связи с этим ниже рассмотрены еще несколько наиболее часто применяющихся корреляций.
Выше было приведено уравнение Риделя для давления паров (7.10). По аналогии с этим уравнением им же рекомендована корреляция с использованием приведенных параметров:
,(7.15)где
; ; ; ; ; ; ,(7.16)c - коэффициент Риделя в критической точке. При вычислении коэффициента Риделя с использованием приведенной выше корреляции необходимо иметь в виду, что критическое давление должно быть выражено в физических атмосферах.
Итак, зная критические параметры Tc, Pc и c,можно рассчитать давление насыщенного пара при любой из интересующих температур. Для определения величины c можно использовать либо значение нормальной температуры кипения, либо известное давление насыщенного пара при какой-либо другой температуре. С аналогичным подходом мы уже встречались при определении величины ацентрического фактора.
Фрост и Колкуорф интегрировали уравнение Клаузиуса-Клапейрона в приближении
, но они не считали величиной постоянной, а находили по уравнению Ван-дер-Ваальса. Результирующее уравнение лишь немного отличается от уравнения Риделя: ,(7.17)однако величина D связана с константой Ван-дер-Ваальса “a” и критическими температурой и давлением:
.(7.18)Тодос и его сотрудники детально исследовали уравнение (7.17) и предложили для константы “C” зависимость
.(7.19)Используя уравнения для приведенных параметров, получена зависимость:
.(7.20)Константу “B” можно определить, если известно давление насыщенного пара вещества при какой-либо температуре. Так, для нормальной точки кипения имеем
.(7.21)Из приведенного материала видно, что значения констант “B” и “C” в уравнении являются зависимыми от природы рассматриваемого вещества. Это должно приводить к лучшему предсказанию прогнозируемого свойства, чем при использовании корреляций “жесткого” типа, где константы имеют постоянное значение. К последним можно отнести, в частности, корреляцию Ли-Кеслера. Тем не менее корреляция Фроста-Колкуорфа-Тодоса используется в практических расчетах нечасто. Причиной тому служит определенное неудобство в ее применении, вызванное отсутствием P-T зависимости в явном виде. Конечно же, в настоящее время эти проблемы легко решаются, но существует некоторая инерция в отношении к применяемым подходам. Для облегчения вычислительных процедур Гарлахер и Браун на основе большого массива надежных экспериментальных данных рассчитали значения констант “B” и “C” для 242 веществ, которые приведены в [5]. Они также предложили приближенную корреляцию этих констант с парахором и фактором ацентричности.
В заключение следует сказать, что предпринималось множество других попыток улучшения подходов к интегрированию уравнения Клаузиуса-Клапейрона с целью обеспечения более тесной связи вида применяемых корреляций и природы соединений, для которых прогнозируются свойства. Обычно увеличение точности прогноза сопряжено с необходимостью привлечения дополнительной экспериментальной информации. Причем ее качество существенно влияет на качество прогноза. Так, например, метод Тека и Стила рекомендован для прогнозирования упругостей паров веществ, в том числе и сильно полярных или имеющих группы, участвующие в образовании ассоциатов. Для использования этого метода необходимо располагать сведениями по энтальпии испарения вещества при нормальной точке кипения, кроме критических параметров и Tb. Совершенно очевидно, что такой набор информации отсутствует для множества веществ. Кроме того, выполненная нами проверка метода на большом массиве соединений показала, что этим методом можно пользоваться только при наличии весьма точных данных. В противном случае предсказание дает большую ошибку, чем при использовании таких методов, как Ли-Кеслера, или эквивалентных ему. Применение методов, широко используемых при прогнозировании давлений насыщенного пара органических веществ, иллюстрируется примером 7.1.