ЖИТОМИРСЬКИЙ ВІЙСЬКОВИЙ ІНСТИТУТ ІМЕНІ С.П. КОРОЛЬОВА
НАЦІОНАЛЬНОГО АВІАЦІЙНОГО УНІВЕРСИТЕТУ
Поляризація діелектричних матеріалів та їх діелектрична проникність
Житомир 2010
1. Загальні відомості про будову речовини
Види зв’язку
Всі речовини – газоподібні, рідинні та тверді – побудовані з атомів та молекул. Основними елементарними частками атомів є протони, нейтрони та електрони. Ядро атома складається з протонів та нейтронів, а електрони заповнюють його оболонки. Іони це атоми або групи атомів, які втратили або приєднали електрони. Молекула це найменша частина речовини, що зберігає її хімічні властивості. В склад молекул може входити різне число атомів. Так, наприклад гелій – неон, аргон це гази, що мають одноатомні молекули; водень, кисень, азот – мають двоатомні молекули. В залежності від будови зовнішніх електронних оболонок атомів, між останніми існують різні види зв’язку.
Ковалентний зв’язок – виникає при об’єднанні електронів двома сусідніми атомами.
Якщо двоатомна молекула складається з атомів одного елемента (Н2, N2,Сl2) , то електронна пара в однаковій мірі належить обом атомам. В цьому випадку молекулу та існуючий в ній ковалентний зв’язок називають неполярним або нейтральним. В таких молекулах центри однакових за величиною та протилежних за знаком зарядів в просторі співпадають. Якщо ж двоатомна молекула складається з атомів різних елементів, електронна пара може бути зміщена до одного з атомів. В таких випадках ковалентний зв’язок називають полярним, а молекули з полярним зв’язком, у яких центри протилежних за знаком зарядів у просторі не співпадають і знаходяться на деякій відстані один від одного - полярними або дипольними.
Ковалентний зв’язок може існувати, як в молекулах так і в атомах, які створюють кришталеву решітку (алмаз, кремній, германій). Іонний зв’язок – визначається силами електростатичного притягання між позитивними та негативними іонами. Прикладом є галогени лужних металів, які мають високу механічну міцність (хлористий натрій, хлористий цезій). Металевий зв’язок спостерігається між атомами в металах. Атоми металів здатні віддавати зовнішні електрони, перетворюючись в позитивні іони, або їх приєднувати, перетворюючись в нейтральні атоми. Таким чином, метал можна розглядати як систему (кришталеву решітку) з позитивних іонів, що знаходяться в середовищі вільних колективізованих електронів. Наявність вільних електронів пояснює електричну та теплову провідність металів. Зв’язок між позитивною решіткою та негативними електронами обумовлює монолітність металу.
Рис. 1. Схематичне зображення двоатомної молекули з ковалентним зв’язком
Полярна молекула характеризується дипольним моментом:
,де q – абсолютне значення заряду 2∙10 –19 [Кл], l -відстань між зарядами (2-5)∙10 –10[м], тому дипольний момент складає десь 10 –30 ÷ 5∙10 –29 [Кл∙м].
Молекулярний зв’язок – (зв’язок Ван-дер-Ваальса) виникає між молекулами в яких існує внутрішній ковалентний зв’язок. Зв’язок забезпечується узгодженим рухом валентних електронів в сусідніх молекулах. Прикладом є парафін з низькою температурою плавлення.
Класифікація речовин за їх електричними властивостями. Всі речовини в залежності від їх електричних властивостей поділяють на провідникові матеріали, діелектрики та напівпровідники.
Умовне зображення енергетичної діаграми має вигляд:
Звичайно зображають тільки другу частину діаграми:
Провідникові матеріали
Різницю між ними наглядно можна зобразити за допомогою енергетичних діаграм. В основі енергетичних діаграм лежить дослідження спектру речовини, що знаходиться в газоподібному вигляді, коли атоми розташовані на відносно великій відстані один від одного. В спектрі видно, що для атомів кожної речовини існують певні спектральні лінії. Це говорить про наявність різних енергетичних рівнів для різних атомів.
Особливості:
1. Багато вільних електричних зарядів
2. Відсутня заборонена зона.
3. Малий питомий опір ρ = 10 –6 ÷ 10 –3 [Ом ∙ см].
4. З ростом температури електричний опір збільшується.
5. Виникаюче електричне поле зникає миттєво, якщо його не підтримувати ззовні.
6. Змінюється рухливість електронів.
7. Концентрація електронів є постійною.
Особливості:
1. Вільних електричних зарядів немає.
2. Велика величина забороненої зони DWзз ≥ 10 еВ
3. Великий питомий опір ρ = 10 10 ÷ 10 20 [Ом ∙ см].
4. З ростом температури електричний опір зменшується.
5. Виникаюче електричне поле існує довго.
Напівпровідникові матеріали
Особливості:
1. Слабкий зв’язок електронів з атомами.
2. Питомий опір має значення між провідниками та діелектриками
ρ = 10 -3 ÷ 10 10 [Ом∙ см].
3. Незначна заборонена зона DWзз = 0,36 ÷ 5,3 [е∙В].
4. З ростом температури електричний опір значно зменшується, зростає концентрація носіїв струму, рухомість носіїв заряду змінюється незначно.
Діелектрик в електричному полі
Основною властивістю будь-якого діелектрика є процес його поляризації при прикладенні до нього електричної напруги. Поляризація – це обмежене зміщення зв’язаних зарядів або орієнтація дипольних молекул в діелектрику при впливі на нього зовнішнього електричного поля. Позитивні заряди зміщуються або орієнтуються в напрямку вектора напруженості поля Е, а негативні в зворотному напрямку. В результаті цього кожний елементарний об’єм діелектрика отримує індукований (наведений) електричний момент. Утворення індукованого електричного моменту p в діелектрику і являє собою явище поляризації. Кількісно інтенсивність поляризації діелектрика визначається поляризованою P, що дорівнює відношенню індукованого електричного моменту об’єму діелектрика до цього об’єму, коли останній прямує до нуля.
P = dp/dV
Поляризована – векторна величина: її напрямок співпадає з електричним моментом – від негативного заряду до позитивного. Одиниця вимірювання модуля поляризованої [Кл/м2].
Поляризація характеризується значенням діелектричної проникності та кутом діелектричних втрат, якщо при поляризації виникає струм через товщу діелектрика, або по його поверхні.
Наявність струму пояснюється наявністю незначної кількості вільних зарядів в діелектрику та кількісно характеризується питомою об’ємною електричною провідністю та питомою поверхневою електричною провідністю діелектрика.
Будь-який діелектрик можна використовувати тільки при певній напрузі. При перевищенні цієї напруги настає пробій – повна втрата діелектричних якостей діелектриків. Значення напруги, при якій виникає пробій діелектрика, називають пробивною напругою. Під впливом електричного поля зв’язані електричні заряди діелектрика зміщуються. При зникненні електричного поля вони повертаються в попередній стан. Якщо діелектрик помістити між двома електродами то утвориться конденсатор, заряд якого описується виразом :
,деС – ємність конденсатора;
U– прикладена напруга
Заряд конденсатора можна описати виразом :
Q0 – заряд, який був би на електродах (обкладинках) при наявності вакууму між ними;
QД – заряд, обумовлений поляризацією діелектрика, що фактично розділяє електроди.
Відносна діелектрична проникність er, це відношення заряду при наявності діелектрика між обкладинками до заряду при його відсутності (між обкладинками вакуум):
З формули видно, що для будь-якого матеріалу діелектрика відносна діелектрична проникність >1 і тільки для вакууму = 1.
Співвідношення для erможна записати так:
, ,де С0 – величина ємності конденсатора при наявності вакууму між електродами.
Відносна діелектрична проникність er є відношенням ємності конденсатора з діелектриком між обкладинками до ємності конденсатора з вакуумом. Більшість діелектриків характеризуються лінійною залежністю електричного зміщення від напруженості електричного поля, яке створюється в діелектрику.
Особливу групу складають діелектрики, в яких зі зміною напруженості поля зміщення відбувається нелінійно. Такі діелектрики називаються сегнетоелектриками. Вперше це явище було виявлено у сегнетової солі (NaKC4 H4 O6 4H2 O).
Залежність діелектричної проникності від температури характеризується температурним коефіцієнтом діелектричної проникності.
,при малих приростах