Метод определения медного числа целлюлозы впервые был введен в 1907 г. Швальбе. Для восстановления меди применялся медно-щелочной раствор, получаемый смешиванием растворов сульфата меди и щелочного раствора сегнетовой соли. При действии реактива Фелинга на целлюлозу происходит окисление ее концевой альдегидной группы до карбоксильной с образованием оксида меди. В окисленных целлюлозах в реакцию вступают также альдегидные группы у C6 и у C2 и C3.
В дальнейшем метод Швальбе неоднократно модифицировали. При модификациях метода вносили изменения в его три стадии: изменяли состав медно-щелочного раствора; использовали разные окислители для окисления Cu+ в Cu2+; изменяли метод определения массы Cu2+.
Для уменьшения возможности окисления целлюлозы Хегглунд предложил применять раствор Бертрана с последующим титриметрическим определением восстановленной меди. Этот метод лежит в основе определения медного числа по ГОСТ 9418—75 и определения PB в гидролизатах по методу Бертрана.
В методе Швальбе — Брэди реактив Фелинга заменили раствором сульфата меди со смесью карбоната и гидрокарбоната натрия. Этот метод положен в основу стандарта TAPPIT—215 m, в котором для окисления Cu+ в Cu2+ применяют раствор молибдено-фосфорной кислоты.
Наиболее существенные изменения в определение медного числа внесены в методе Энка. В этом методе в составе медно-щелочного реактива неустойчивая к окислению сегнетова соль заменена смесью лимонной кислоты и гидроксида натрия. Для окисления Cu+ в Cu2+ используется азотная кислота.
Образовавшуюся Cu2+ определяют комплексонометрическим титрованием раствором трилона Б — 2· NC2H4N2^H2O.
Следует подчеркнуть, что несмотря на многочисленные усовершенствования методов определения медного числа целлюлозы, до настоящего времени оно остается лишь приблизительной мерой содержания восстанавливающих карбонильных групп в целлюлозе по ряду причин: при определении медного числа в щелочной среде происходят побочные реакции окисления спиртовых групп, что приводит к увеличению восстанавливающей способности целлюлозы; реагенты, применяемые для определения медного числа, например реактив Фелинга, не являются достаточно устойчивыми и в процессе определения медного числа могут выделять некоторое количество Cu2O в результате реакции самовосстановления; реакция восстановления меди, происходящая во время определения медного числа, не является стехиометрической, так как надмолекулярная структура и физическое состояние целлюлозы влияют на доступ реагентов к макромолекулам; условия проведения анализа медного числа целлюлозы по разным методикам различны и их необходимо строго соблюдать, а приводя значения медного числа всегда указывать метод, по которому оно определялось; определение альдегидных групп по значению медного числа не совпадает с результатами других методов и поэтому нельзя утверждать, что медное число пропорционально содержанию альдегидных групп. Несмотря на все эти недостатки, определение медного числа целлюлозы имеет ценность при серийных анализах, особенно при анализах образцов целлюлозы, подвергнутых сходным обработкам, с целью сравнения степени деструкции, а также для качественной характеристики целлюлозы.
Методика определения медного числа. Готовят два раствора: А—62,5 г трижды перекристаллизованного CuSO4 · 5Н20 в 1 дм3 воды; Б—346 г сегнетовой соли и 150 г NaOH в 1 дм3 воды. Для растворения осадка оксида меди готовят раствор в,—50 г Fe2., и 200 г H2SO4 в 1 дм3 воды или раствор B2—100 г Fe2;,-24Н20 и 140 г H2SO4 в 1 дм3 воды.
Навеску массой около 1 г воздушно-сухой целлюлозы помещают в сухую коническую колбу вместимостью 250 см3, приливают 20 см3 дистиллированной воды и нагревают содержимое колбы до кипения. Одновременно в две сухие конические колбы, вместимостью по 50 см3 каждая, из бюреток наливают по 20 см3 соответственно растворов А и Б. Растворы нагревают до кипения и сливают вместе в одну из колб. Образовавшийся раствор темно-синего цвета осторожно вливают в колбу с навеской, закрывают пробкой с воздушным холодильником и ставят колбу на юрячую электроплитку. С момента закипания содержимое колбы кипятят точно 3 мин. Во время кипячения необходимо следить, чтобы не было выбросов из колбы в холодильник. После этого снимают колбу с плитки, быстро обмывают пробку воздушного холодильника 50 см'1 дистиллированной воды, сливают эту воду в колбу и охлаждают ее в струе проточной воды. Содержимое колбы после охлаждения фильтруют через стеклянный пористый фильтр под вакуумом. Целлюлозу с осадком Cu2O промывают горячей водой до нейтральной реакции по фенолфталеину. При фильтровании и промывке необходимо следить, чтобы целлюлоза с осадком Cu2O во избежание окисления последнего кислородом воздуха всегда находилась под водой. Затем стеклянный пористый фильтр с промытой целлюлозой и осадком Cu2O1 покрытыми водой, переносят на другую чистую отсосную колбу. Отсасывают воду, быстро отключают вакуум, приливают 15 см3 раствора B1 или B2 и помешивают стеклянной палочкой. После этого отсасывают жидкость из стеклянного фильтра, отключают вакуум и вторично приливают 15 см3 раствора Я, или B2, перемешивают его с осадком и снова отсасывают. Целлюлозу на фильтре промывают в два приема по 30 см3 раствора серной кислоты концентрацией 4 моль/дм3 и затем примерно 150 см3 дистиллированной воды до отрицательной реакции на железо.
Фильтрат непосредственно в отсосной колбе титруют раствором перманганата калия, концентрацией 0,04 моль/дм3 до первой устойчивой розовой окраски раствора.
Медное число, г на 100 г абсолютно сухой целлюлозы, рассчитывают по формуле
гден— объем раствора перманганата калия концентрацией 0,04 моль/дм3, израсходованный на титрование, см3; 0.00254 — масса меди, соответствующая I см3 раствора перманганата калия концентрацией 0,04 моль/дм3, г; g— масса абсолютно сухой навески целлюлозы, г.
Расхождения между результатами двух параллельных определений не более 0,03 г при уровне показателя медного числа до 1,0 г и 0,2 г — свыше 1,0 г.
3. Определение альдегидных групп фотоколориметрическим
методом по Саболксу
Метод основан на восстановлении альдегидными группами хлорида 2,3,5-трифенилтетразолия с образованием красного красителя формазана, который определяют фотоколориметрически.
Этот метод дает достаточно точные и хорошо воспроизводимые результаты и позволяет определять очень малые количества альдегидных групп.
Методика анализа. Навеску абсолютно сухой измельченной целлюлозы массой 0,01 г помещают в пробирку и заливают 0,5 см3 раствора гидроксида калия концентрацией 0,2 моль/дм3 и 0,5 см3 0,2%-ного водного раствора хлорида 2,3,5-трифенилтетразолия. Пробирку опускают на 10 мин в кипящую водяную баню. Затем пробирку с окрашенной целлюлозой быстро охлаждают под струей холодной воды. Массу из пробирки переносят на стеклянный пористый фильтр и отфильтровывают, применяя отсос, в мерную пробирку на 10 см3. Массу на стеклянном фильтре промывают без отсоса небольшими порциями этанола до тех пор, пока образовавшийся в ходе реакции краситель не перейдет полностью в раствор и объем жидкости в отсосной пробирке не достигнет 10 см3. Для улучшения растворения красителя массу на фильтре перемешивают стеклянной палочкой.
Интенсивность окраски полученного раствора определяют на спектрофотометре при длине волны 546 нм или на фотоэлектрическом колориметре с зеленым светофильтром в кювете толщиной 10 мм. Параллельно проводят контрольное определение без образца целлюлозы. Контрольную пробу, которая должна быть бесцветной, используют в качестве раствора сравнения.
Следует отметить, что образовавшийся краситель формазан нестоек, и поэтому все операции необходимо выполнять быстро.
Содержание альдегидных групп — CHO определяют по градуировочному графику в мг и рассчитывают их массовую долю, % к абсолютно сухой целлюлозе, по формуле
где т — масса СНО-групп в навеске, определенная по градуировочному графику, мг; g— масса абсолютно сухой навески, г.
Построение градуировочного графика. Готовят точно 0,1%-ный раствор химически чистой глюкозы. В мерную пробирку вносят микропипеткой 0,05 см3 этого раствора, добавляют 0,5 см3 раствора гидроксида калия концентрацией 0,2 моль/дм3 и 0,5 см3 0,2%-ного раствора ХТТ. Смесь в пробирке нагревают 10 мин на кипящей водяной бане, охлаждают, доливают этанолом до метки, соответствующей 10 см3, и фотоколориметрируют. Найденное значение оптической плотности соответствует 0,05 мг глюкозы или 0,007775 мг СНО-групп. Строят градуировочный график, откладывая по оси абсцисс найденную оптическую плотность 0,1%-ного раствора глюкозы, а по оси ординат — массу СНО-групп. Полученную точку соединяют с началом системы координат.
4. Определение карбонильных групп с борогидридом натрия
Щелочной раствор борогидрида натрия или калия при комнатной температуре быстро и селективно восстанавливает альдегидные и кетонные группы до спиртовых групп. В этих условиях он достаточно инертен по отношению к двойным связям, эпоксидным, сложноэфирным и карбоксильным группам. Механизм реакции заключается в присоединении гидрид-иона к карбонильному атому углерода, а атома бора к кислороду карбонильной группы с последующим гидролизом промежуточного боросодержащего комплекса. В этой реакции используются все четыре атома водорода борогидрида.