Смекни!
smekni.com

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах (стр. 8 из 9)

При достижении температуры 150-180°С в верхнюю часть реактора (3), заполненную кварцевой насадкой (4), начинали подавать метанол из бюретки (1) с помощью перистальтического микродозатора (ДЛВ) (2). Жидкие продукты реакции на выходе из реактора охлаждались в водяном холодильнике-конденсаторе (10).

Сконденсировавшиеся продукты реакции и не прореагировавший метанол собирались в приемнике холодильника-конденсатора. Остальная часть жидких и газообразные продукты реакции проходили через низкотемпературную ловушку, охлаждаемую смесью льда и NaCl (до Т = -22°С). В ловушке конденсировались и собирались, в зависимости от используемого катализатора диметиловый эфир, метанол, метилформиат и вода, а газообразные продукты направлялись на продувку кранов-дозаторов хроматографов. Сброс газа осуществлялся в вытяжную вентиляцию.

Рис.4 Схема лабораторной установки

I бюретка; 2 микродозатор; 3 кварцевый реактор; 4 кварцевая насадка; 5 слой катализатора 6 электрообогрев реактора; 7 термопара 8 потенциометр ПП-63; 9 регулятор температуры ЭПВ-11 А; 10 холодильник-конденсатор; 11 реометр; 12 электрическое реле РЭР ЮМ; 13 вентиль тонкой регулировки; 14 моностат; 15 пенный расходомер; 16 низкотемпературная ловушка.

Газообразные и жидкие продукты анализировали методами ГЖХ и ГАХ на хроматографах ЛХМ-8МД. На основании информации о составе и количестве продуктов реакции, а также количестве пропущенного сырья, рассчитывали материальный баланс опыта, и выходные показатели процесса.


13.2. Методика анализа жидких продуктов

Методика рассчитана на хроматографическое определение диметилового эфира, метанола, метилформиата и воды в жидких продуктах реакции.

Для определения состава продуктов реакции использовался газовый хроматограф ЛХМ-8МД (модель 5) с детектором по теплопроводности. Газноситель -гелий. Колонка хроматографа, изготовленная из нержавеющей стали, длиной 2 м и диаметром 2 мм, заполнена сорбентом 10%масс. Tween-60/ПолихроМ".

Условия анализа продуктов:

Температура колонки 85°С;

Температура испарителя 125°С;

Расход газа-носителя 25мл/мин;

Ток моста катарометра 100мА;

Скорость ленты самописца 720м/ч.

Исследуемые пробы вводились в хроматограф с помощью микрошприца МШ 10 через головку испарителя. Иглу шприца вводили быстро и на всю длину. Объем пробы 1мкл.

Время удерживания компонентов:

Воздух 23 сек;

Диметиловый эфир 37 сек;

Метилформиат

Метанол 2 мин. 13 сек;

Вода 4мин.51 сек.

Для количественного определения состава жидких продуктов реакции использовался метод абсолютной калибровки с учетом поправочных коэффициентов.

Поправочный коэффициент определяли как тангенс угла наклона прямой, построенной в координатах: Si/SCT=F(Gi/GCT), где Si, Sct- площади пиков определяемого вещества и стандарта; Gi,Gct- их весовые соотношения. За стандарт принимался метанол. Поправочные коэффициенты:

Диметиловый эфир 1,2

Метанол 1

Вода 1,21

Для определения содержания компонентов рассчитывались площади соответствующих пиков по формуле:

Si=hi*bi*Mi (1)

где: hi - высота пика, мм;

bi - ширина пика на середине высоты;

Mi - масштаб записи пика.

Процентное содержание каждого компонента вычислялось по формуле:

Ci=(Si*Ki*100)/ (2)

где: Si - площадь пика компонента, мм ;

Ki - поправочный коэффициент для данного компонента.

13.3. Методика анализа газообразных продуктов

Анализ газообразных продуктов реакции, содержащих Н2, СО, СО2, CH4, ДМЭ и смесь углеводородов С2 - С4, проводили на хроматографах ЛХМ-8МД с использованием катарометров, четырех насадочных колонок и печи конверсии углеводородов. Анализируемым газом последовательно продували петли кранов-дозаторов и далее пробу газа вводили на анализ в колонки А и Г. По завершении анализа на этих колонках газ подавался на колонки Б и В.

Условия анализа ДМЭ (колонка А):

Колонка из нержавеющей стали, L=1,5м, D=2мм.

Адсорбент Порапак PQS;

Газ-носитель Не ;

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120 мА.

Условия анализа углеводородов (колонка Б):

Колонка из нержавеющей стали, L=6м, D=2мм.

Колонка из нержавеющей стали, L=l ,5м, D=2мм.

Адсорбент А12О3;

Газ-носитель Аг;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА;

Температура печи конверсии углеводородов 900°С.

Условия анализа Аr, СО (колонка В):

Колонка из нержавеющей стали, L=4м, D=2мм.

Адсорбент молекулярные сита, 5А;

Газ-носитель Не ;

Температура колонки 75°С

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120мА.

Условия анализа Н2, CH4, CO2 (колонка Г):

Колонка из нержавеющей стали, L=2м, D=2мм.

Адсорбент уголь СКТ;

Газ-носитель Аr;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА.

Калибровочные коэффициенты определялись по площадям пиков, полученных при заколе чистых веществ на соответствующие колонки, в соответствии с уравнениями:

КДМЭ =SAr2 / SДМЭ

KH2=SH2/ SHе

KCO=SCO/SAr1

KCO2=SCO2/SAr2

KCH4=SCH4/SAr1

где SHе,SAr1 ,SAr2- площади пиков чистых аргона и гелия, полученных соответственно с колонок Г, В и А. Калибровочные коэффициенты проверяются каждые два месяца, площади пиков берутся как среднее значение из трех вводов. Значения калибровочных коэффициентов представлены ниже:

КДМЭ = 0,68

KH2= 1,64

KCO= 0,75

KCO2= 2,58

KCH4= 0,5

Ежедневно хроматографы калибровались по аргону и гелию.

Концентрации газообразных продуктов реакции (%об.) определялись по формулам:

CДМЭ=SДМЭ*KДМЭ*MДМЭ*100/(S Ar2*M Ar2) (3)

СН2=SH2*MH2*100/(KH2*SHe*MHe) (4)

CCO=SCO*MCO*100/(KCO*SAr1*MAr1) (5) CCO2=SCO2*MCO2*100/(KCO2*SAr2*MAr2) (6) CCH4=SCH4*MCH4*100/(KCH4*SAr1*MAr1) (7)

где: Sдмэ= SH2, Sco, SCO2, SCH4 - площади пиков компонентов газообразных продуктов реакции,

М - масштаб записи пика,

К - калибровочные коэффициенты.

Концентрации углеводородной смеси рассчитывались по формуле:

Ci=Si*Ki*100/(Si*Ki) (9)

где: Si- площади пиков компонентов углеводородной смеси,

Ki- количество молекул водорода в углеводороде.

Далее концентрация водорода в смеси углеводородов приравнивалась к СH2, полученной из уравнения (10) и соответственно пересчитывались концентрации всех углеводородов по пропорции:

CУ.В. (1) =CH2*CУ.В. / CH2 У.В. (10)

где: CУ.В. (1) - концентрация углеводорода, приведенная к одинаковой концентрации водорода в составах газа, полученных по результатам разных анализов.

Полученные концентрации углеводородной и не углеводородной газовых смесей приводились к одному составу по уравнению:

Ci =Cri * 100 / (  ( Cr+( CУ.В. (1)- -( CH2 У.В. + CCH4 У.В.)) (11)

где: Cri - концентрация i-того компонента углеводородной или не углеводородной газовых смесей,

Сг - концентрации не углеводородной газовой смеси,

CH2 У.В. , CCH4 У.В концентрации водорода и метана в углеводородной газовой смеси.

Количество газа, полученное за время опыта, определялось исходя из известного количества аргона, подаваемого в реактор, и его концентрации в смеси газообразных продуктов реакции по уравнению:

Vr = (VAr/CAr)*100-VAr(12)

13.4 Методика определения удельной поверхности

Измерение удельной поверхности дисперсных пористых тел, в том числе катализаторов и сорбентов, является в настоящее время необходимым элементом научных исследований и средством контроля в соответствующих технологических процессах. Из многочисленных методов определения удельной поверхности твердых тел наиболее универсальными и широко используемыми являются методы газовой адсорбции [35].

Для определения удельной поверхности интересующих нас образцов в работе был использован метод низкотемпературной десорбции аргона. Анализ проводили на приборе ЛХМ-8МД при следующих условиях:

Ток моста катарометра92мА;

Скорость газа-носителя гелия с 10% об. Аргона 30 мл/мин.;

Температура образца катализатора - 195,8°С;

Эталон - -А12О3 Sуд. = 160м2/г.

Расчет удельной поверхности проводили методом сравнения площадей де-сорбционных пиков, пропорциональных поверхности образца и эталона в соответствии со следующим уравнением [35 ]:

Siуд=si*gоэт*Sэтуд(gi*sэт0 )

где: Si- площадь десорбционного пика образца, мм ;

gi- навеска образца, г;

sэт0 - площадь десорбционного пика эталона, мм ;

gоэт - навеска эталона, г;

Sэтуд - удельная поверхность эталона, м2/г.

13.5 Методика приготовления катализаторов

В связи с широким применением катализаторов в промышленности основного органического синтеза производится большое количество катализаторов, различающихся как по химическому составу, так и по методу их приготовления.

Катализатор должен обладать рядом свойств, обеспечивающих рентабельность его использования, а именно:

- высокой активностью и селективностью;

- большой поверхностью активного компонента;

- достаточной устойчивостью к действию ядов и высоких температур;

- достаточной механической прочностью;

- оптимальными гидродинамическими характеристиками, которые обуславливаются размерами, формой и плотностью упаковки зерен катализатора [36].