2.2 Приготовление образцов
Пластины на основе исходного полимера и композитов на его основе и органоглины для оценки огнестойкости с размерами 100x1 Ох 1мм получали методом прессования при температуре 250 °С, а также давлении 250 кгс/см (ГОСТ 25.601 - 80). Фиксация формы изделия происходит в результате охлаждения в пресс-форме до комнатной температуры. Затем на данных пластинах проводились исследования на горючесть.
Образцы для ударных испытаний получали литьем под давлением ~ 10 МПа на термопластавтомате «KuASY-l,6 х 2/1» (Германия) при температуре 260 °С.
2.3 Методика приготовления органоглины
В водную суспензию Са-монтмориллонита, полученную путем перемешивания на магнитной мешалке в течение двух часов, добавляли метакрилат туанидина (МАГ) в концентрации 5 % от массы монтмориллонита (50 г) и перемешивали еще 4 часа. Полученную органоглину промывали дистиллированной водой многократной декантацией. Высушивали при комнатной температуре.
2.4 Методика определения скорости горения
Горение принято характеризовать значениями линейных и массовых скоростей выгорания полимерных материалов. При лабораторных исследованиях определяют время самостоятельного горения материала. Исходя из этого, в на стоящей работе оценку эффективности действия замедлителей горения оценивали по продолжительности самостоятельного горения композитов согласно ГОСТ 21207. 81. Для этого образец, пластинку размером 100x10x1 мм, закрепили по ширине в горизонтальном положении таким образом, чтобы длина незакрепленной части образца была не менее 80 мм. Затем образец поджигали горелкой, пламя которой устанавливается под углом 45 ± 1°. Через 60 сек после поджога образца, горелку выключают, одновременно включают секундомер и измеряют время горения образца.
Метод предназначен для сравнительной оценки относительной способности пластмасс воспламеняться под воздействием источника зажигания.
Время горения определяли под вытяжкой. Образцы поджигали газовой горелкой Бунзена (рис. 2.1.), диаметром (9,5 ± 0,5) мм, с использованием смеси газов: пропан-бутан.
Рис. 2.1. Устройство газовой горелки Бунзена: 1 - образец; 2 - горелка Бунзена; 3 - поворотное приспособление.
2.5 Определение коксового остатка
Коксовый остаток определялся термогравиметрическим методом. Образцы исходного вторичного полиэтилентерефталата и композитов ВПЭТФ + органоглина выдерживали при температуре 800 °С в муфельной печи в течение часа. Скорость подъема температуры 5 °С/мин. Затем находили разницу в массе навесок до и после выдерживания в муфельной печи и вычисляли коксовый остаток (%).
2.6 Измерение показателя текучести расплава (ПТР)
Показатель текучести расплавов (ПТР) или индекс расплава - условная величина, характеризующая поведение полимера в вязкотекучем состоянии при переработке его в изделия методами литья под давлением, экструзии и др. ПТР обычно определяют для термопластичных материалов (полиэтилен, полипропилен, полиформальдегид, ПЭТФ и др.) и выражают количеством полимера в граммах, которое проходит через стандартное сопло в течение 10 мин при определенных температуре и нагрузке.
ПТР, характеризующий реологические свойства расплавов вторичного ЭТФ и его композиций с органоглиной, определяют на капиллярном вискози- метре ИИРТ-М (рис. 2.2.), который представляет собой стальной цилиндрический корпус 4, имеющий два продольных канала. Один канал служит для загрузки.
На верхней части поршня находится втулка 2, на которой помещен съемный груз 1. В нижней части центрального канала укреплено стандартное сопло 6, выполненное из закаленной стали. Сопло не должно выступать за пределы корпуса.
Корпус пластометра имеет электрообогрев 5, при помощи которого можно создавать в цилиндре необходимую температуру. Температура поддерживается автоматически и регулируется при помощи электронного потенциометра.
Прибор снабжен выдавливающим устройством для удаления остатков испытуемого полимера. Все поверхности пластометра, соприкасающиеся с материалом, должны быть отполированы. Пластометр устанавливают вертикально и укрепляют на металлической подставке 7 [67].
Для испытуемого материала с ПТР от 0,15 до 25 г/10 мин применяют
стандартное сопло с внутренним диаметром 2,095 ± 0,005 мм. При большой текучести полимеров (от 25 до 250 г/10 мин) применяется сопло с внутренним диаметром от 1,160 до 1,200 мм.
Полимер для определения ПТР используют в виде порошка или неболь
ших гранул.
Вес груза Р (в г) для стандартного сопла рассчитывают по формуле:
где, D - диаметр поршня, мм; d - диаметр сопла, мм.
Колебания в весе груза допускаются в пределах ±10 г.
Перед началом испытаний прибор нагревают до необходимой температуры (в данном случае - 260 °С), выдерживают в течение 15 мин, а затем в центральный канал вводят навеску испытуемого полимера и опускают поршень без груза. Спустя 3-4 мин, когда установится необходимая температура полимера,
на поршень помещают груз (в данном случае груз стандартный - 2,160 кг). Материал начинает выдавливаться через сопло пластометра. Первую выдавленную порцию загрузки (примерно 1/3) отбрасывают, а последующие порции срезают через определенные промежутки времени (5 с) и после охлаждения взвешивают.
Расчет ПТР осуществляют по следующей формуле:
М-600 ПТР = где М - масса (усредненная по пяти значениям) полимерного образца, выдавленного из сопла пластометра через каждые 5 с; 600 - стандартное время испытаний для большинства полимеров, с; Т - время опыта, с [67].
В условном обозначении ПТР верхний индекс обозначает температуру испытаний в °С, а нижний - нагрузку в кг, при которой выполнены измерения ПТР.
Рис. 2.2. Схема прибора для определения показателя текучести расплава полимера: 1 - груз; 2 - втулка; 3 - поршень; 4 - цилиндр; 5 - электрообогрев; 6 - сопло; 7 — подставка.
2.7 Измерение плотности
Плотность литых образцов определяют методом гидростатического взвешивания согласно методике [67]. Для этого отлитую таблетку, взвешивают с точностью до 0,002 г. Погружают в жидкость, в которой исходный вторичный ПЭТФ, а также композиции на его основе не растворяются и не набухают), для удаления с поверхности таблетки пузырьков воздуха их вытирают фильтровальной бумагой. После этого образец подвешивают на очень тонкой проволоке к крючку над чашкой весов и подставляют стакан с жидкостью (с дистиллированной водой), в которой проводят определение. Стакан ставят на специальну подставку, которая не должна касаться чашки весов. Образец с проволокой погружают в воду при 20 °С и взвешивают. Затем взвешивают проволоку без образца при этом же уровне погружения. Схема прибора для определения плотно- гидростатическим взвешиванием представлена на рис. 2.3. Плотность полимерных композиций р (г/см3) вычисляют по формуле:
Ударные испытания по методу Шарпи
Ударные испытания выполнены согласно общепринятой методике Шарпи трехточечный высокоскоростной изгиб) - ГОСТ 4746-80, образцы типоразмера, имеющие следующие размеры: длина L = 50 мм, ширина В = 6 мм и толщина = 4 мм,. Ударные испытания выполнены на маятниковом копре ИТ-1/4 со малой энергии 1,0 Дж. Скорость х> ударника в момент контакта с образцом равнялась 2,9 м/с (согласно паспорту). Общий вид такой установки показан на рисунке 2.4. [69].
Ударную вязкость Ар для исходного вторичного ПЭТФ и композиций на основе вторичного ПЭТФ и органоглины определяли по формуле:
где, U - энергия разрушения образца, Дж; В - ширина образца, мм; D - толщина образца композита, мм.
Образцы для ударных испытаний получены литьем под давлением
ЮМПа на термопластавтомате «KuASY-l,6 х 2/1» (Германия) при температуре 260 °С.
Рис. 2.4. Общий вид установки для ударных испытаний по методике Шарпи.
2.9 Статистическая обработка данных
Любые измерения сопровождаются той или иной ошибкой или погрешностью, которые можно разделить на два вида: систематические и случайные. [70]
В ходе исследования физико-химических свойств полимера проводили несколько определений, которые характеризуются воспроизводимостью полученных результатов, зависящей от случайных погрешностей, и правильностью результатов, являющейся следствием систематической погрешности.
Для оценки воспроизводимости результатов эксперимента используем методы математической статистики, разработанные для малого числа измерений п.
Доверительный интервал. При отсутствии систематической погрешности среднее арифметическое значение х не совсем совпадает с истинным значением величины. Отличие носит вероятностный характер и может быть оценено с учетом несовпадения реального t-распределения погрешностей с распределением при бесконечно большом числе определений.
Численное значение ширины доверительного интервала 5 зависит как от числа выполненных определений п, так и от выбранного значения доверительной вероятности Р:
Где tpin - коэффициент Стьюдента, численные значения которого приводятся в справочной литературе.
Полученные результаты представляют в виде интервального значения определенной величины: