1) Модификация целлюлозы (обработка антимикробным веществом, содержащим реакционноспособную группу, или введение в целлюлозу функциональных групп, необходимых для последующего присоединения антимикробных веществ, и само присоединение антимикробных веществ) должна осуществляться достаточно доступными способами.
2) Химикаты, необходимые для модификации целлюлозы, должны выпускаться в промышленном или опытно-промышленном масштабе, обладать высокой активностью, достаточно широким спектром антимикробного действия, низкой токсичностью и быть дешевыми.
3) Антимикробные вещества, используемые для получения антимикробных целлюлозных волокнистых материалов, должны выпускаться в промышленном или опытно-промышленном масштабе, обладать высокой активностью, достаточно широким спектром антимикробного действия, низкой токсичностью и быть дешевыми.
4)При присоединении антимикробного вещества к модифицированно- му целлюлозному материалу должна достигаться оптимальная прочность химической связи, которая, с одной стороны, должна быть достаточно ла- бильной для того, чтобы обеспечить отщепление от волокна количества ан- тимикробного вещества, необходимого для проявления высокого антимик- робного действия, а с другой стороны, - достаточно стабильной для того, чтобы антимикробные свойства волокнистого материала сохранились после многократных стирок (очевидно, что присоединение антимикробного веще- ства к полимеру химической связью, очень быстро гидролизующейся в мягких условиях, не позволит получить антимикробный волокнистый материал, свойства которого сохраняются после многократных стирок). Таким образом, в идеальном случае выделение антимикробного вещества должно быть строго регулируемым.
5) Антимикробные волокнистые материалы должны быть активным и по отношению к патогенной микрофлоре, не оказывать токсического, дерматологического и аллергического действия на организм человека; антимикробные свойства волокнистого материала должны сохраняться после многократных стирок, применяющихся при его эксплуатации.
6) Процессы модификации целлюлозного материала и присоединения антимикробного вещества должны осуществляться на оборудовании, имеющемся на заводах химических волокон и на предприятиях текстильной промышленности, желательно по непрерывной схеме.
7) Процесс получения антимикробного целлюлозного волокнистого материала должен осуществляться без значительной деструкции макромолекул целлюлозы и заметного снижение комплекса физико-механических и гигиенических свойств волокнистого материала.
Следует отметить, что в последние годы возрос интерес в разработке еще одного метода придания целлюлозным волокнистым материалам антимикробных свойств - фиксации антимикробных веществ на волокнистом материале с помощью полимеров, наносимых на его поверхность. В этом случае наряду с антимикробными свойствами волокнистый материал приобретает также и другие практически ценные свойства, обусловленные свойствами полимера, использованного для указанной цели. Например, в работах [59 -61] описана фиксация на целлюлозном волокнистом материале антимикробных веществ с помощью кремнийорганических полимеров, при этом модифицированный материал приобретает высокую гидрофобность и может применять в качестве неприлипающего к ране антимикробного перевязочного средства.
Приведенные выше данные показывают, что в настоящее время разработаны методы получения антимикробных целлюлозных волокнистых материалов, основанные на фиксации антимикробного вещества в полимерном покрытии, наносимом на поверхность волокнистого материала, химическом присоединении антимикробного вещества к структуре гидратцеллюлозного волокна в процессе его формования. Целлюлозные волокнистые материалы, на поверхность которых нанесено полимерное покрытие, содержащее антимикробные вещество, могут иметь различные области применения. Для получения волокнистых материалов, антимикробная активность которых сохраняется при многократных мокрых обработках в процессе, наиболее целесообразно присоединять антимикробные вещества к макромолекулам целлюлозы химическими связями. Разработаны промышленные варианты получения антимикробных целлюлозных волокнистых материалов, содержащих химически связанные антимикробные вещества.
1.8 Области применения антимикробных целлюлозных волокнистых материалов
Антимикробные целлюлозные волокнистые материалы могут применяться для различных целей в медицинских учреждениях, различных отраслях промышленности, для изготовления изделий бытового назначения, в длительных экспедициях.
В настоящее время в РФ и за рубежом ведется широкий поиск средств борьбы с внутрибольничной инфекцией. Решение этой проблемы особенно важно для лечения больных с ослабленной иммунологической реактивностью, например больных, перенесших операцию трансплантации почки, которые подвергаются иммунодепрессивной терапии, больных гематологических клиник, родильниц и др. [62 - 64].
Ослабление естественной защитной системы организма, обеспечивающей торможение развития микробов на коже человека, происходит также при воздействии на организм целого ряда отрицательных факторов, например,теплового микроклимата, повышенной влажности воздуха, «светового голода», работы в экстремальных условиях. Повышение микробной обсеменен-ности кожных покровов приводит к увеличению числа гнойничковых заболеваний кожи [42 - 65]. Поэтому снижение микробной обсемененности кожных покровов актуально не только для больных медицинских учреждениях, но и для целого ряда категорий рабочих (например, рабочих горячих цехов, шахтеров). При длительном пребывании человека в герметично замкнутом помещении небольшого объема с ограниченными санитарно-бытовыми условиями (например, в космических аппаратах) также происходит накопление микроорганизмов на коже человека, при этом возрастает относительное количество микрофлоры с признаками патогенности [14, 66]. Поэтому нормализация микрофлоры кожи важна и для людей, работающих в указанных выше условиях.
Значительный интерес представляет использование антимикробных целлюлозных волокнистых материалов для борьбы с грибковыми заболеваниями. В обзорах [38, 41] показано, что целлюлозные волокнистые материалы, содержащие галогенпроизводные фенола (ГПФ), ртутьорганические соединения и некоторые другие антимикробные вещества, обладают активностью по отношению к патогенным грибкам, вызывающим микозы ног.
Ткани, содержащие химически связанные гуанидинхлоридфенол (ГХФ) или ионы меди, могут быть использованы и для изготовления спецодежды и средств личной гигиены, применяющихся на предприятиях микробиологической, медицинской и молочной промышленности, а также в медицинских учреждениях, поскольку установлено, что эти ткани обладают активностью по отношению к дрожжеподобным и плесневым грибам, используемым при микробиологических синтезах ферментных препаратов и белково-витаминных концентратов, к Шигелле - Зоне возбудителю дизентерии, различным видам микроорганизмов, выделенным в условиях химико-фармацевтического производства [52 - 63].
Следует отметить, что в некоторых случаях (например, в молочной промышленности) применение антимикробной ткани, содержащей ионы меди, химически связанные с привитой к целлюлозе полиакриловой кислотой, оказывается более эффективным, чем антимикробной ткани, содержащей химически связанный гуанидинхлоридфенол (ГХФ) [67,68].
В настоящее время показана эффективность и целесообразность применения антимикробного нетканого фильтрующего материала, изготовленного из вискозного волокна, в структуру которого в процессе формирования включен гуанидинхлоридфенол (ГХФ) [38, 41] для стерилизации воздуха, подаваемого в технологическое оборудование при производстве витаминов, антибиотиков и пива. Такой антимикробный фильтрующий материал имеет ряд преимуществ перед другими типами фильтрующих материалов.
Таким образом, в результате проведенных исследований показана целесообразность использования антимикробных целлюлозных волокнистых материалов для изготовления одежды, белья, средств личной гигиены, применяющихся в клиниках различного профиля, в горячих цехах, шахтах, длительных экспедициях, для борьбы с микробной инфекцией, лечения и профилактики вызываемых ею заболеваний. Большое значение имеет применение антимикробных целлюлозных волокнистых материалов для изготовления постепенно рассасывающихся в организме и нерассасывающихся перевязочных материалов. Антимикробные целлюлозные волокнистые материалы эффективно используются в качестве фильтрующего материала для очистки и стерилизации технологического воздуха на предприятиях медицинских и пищевой промышленности.
Антимикробные целлюлозные волокнистые материалы могут быть использованы и для изготовления одежды, применяющейся в обычных условиях.
Анализ современного состояния проблемы разработки и применения антимикробных целлюлозных волокнистых материалов свидетельствует о широком развитии исследований в этой области и большом количестве публикуемых работ. В настоящее время установлена определенная взаимосвязь
между строением производных целлюлозы, содержащих химически связанные антимикробные вещества, их химическими и антимикробными свойствами. Большой научный и практический интерес представляет дальнейшее развитие и углубление этих исследований, так как только на их основе могут быть разработаны новые более совершенные способы получения антимикробных волокнистых материалов с заданными свойствами. Первостепенную роль при проведении этих исследований должны играть современные представления о влиянии макромолекулярной природы материала на реакционную способность его функциональных групп (в частности, на гидролиз связи между антимикробным веществом и полимером). В последние годы разработаны способы получения антимикробных целлюлозных волокнистых материалов различного назначения, в том числе и материалов, антимикробные свойства которых сохраняются при многократных мокрых обработках в процессе эксплуатации. Некоторые из этих способов освоены промышленностью. Особенно большое значение имеет разработка в дальнейшем антимикробных целлюлозных волокнистых материалов со строго регулируемым на протяжении всего срока их эксплуатации выделением антимикробных веществ. На основании проведенных систематических исследований в настоящее время определены наиболее эффективные области применения антимикробных целлюлозных волокнистых материалов. Эти области достаточно обширны, однако можно полагать, что в дальнейшем они будут постоянно расширяться.