В науке о лекарственных веществах - фармакологии - все эти вещества классифицируются в зависимости от их основного влияния на различные биологические функции человеческого организма. Средства для общего наркоза – фторотан, хлороформ, этиловый эфир, циклопропан действуют преимущественно на центральную нервную систему.
Широкое применение фреонов в технике и в быту создало угрозу для существования в стратосфере озонного слоя, защищающего Землю от жесткого ультрафиолетового излучения. Пары галогенопроизводных фотохимически расщепляются в стратосфере с образованиематомов галогенов, которые вызывают превращение озона в кислород.
2.1 Развитие химии органических соединений фтора
История химии фтора начинается не в древнем Египте или Финикии и даже не в средневековой Аравии. Началом возникновения химии фтора послужило открытие фтористого водорода (Шееле, 1771г.)и затем элементарного фтора (Муассан, 1886 г.). Органические же соединения фтора были подвергнуты систематическому изучению только примерно в 1900 г. Овартсом, работы которого имеют большое значение. Дальнейшей вехой в развитии химии органических соединений фтора является применение фторированных производных метана и этана и качестве хладоагентов (Мидгли, Хенне, 1930 г.), что привело впоследствии к систематическому исследованию способов получения и свойств этих соединений. Примерно к 1940 г. стало ясным значение перфторпроизводных, и были разработаны способы их получения: каталитическое и некаталитическое фторирование элементарным фтором и фторирование фторидами серебра и кобальта. Приблизительно в это же время был получен тефлон, несколькими годами позже началось промышленное получение политрифторхлорэтилена. Разработанное в последнее время электролитическое фторирование позволяет легко получать перфторпроизводные электролизом в безводном фтористом водороде (1948 г.). В связи с этим, большое значение приобрело получение перфторалкилгалогенидов из перфторкарбоновых кислот, присоединение этих галогенидов к олефинам и ацетиленам, получение и реакции гриньяровских соединений из перфторалкилгалогенидов и, наконец, получение олефинов термическим разложением щелочных солей перфторкарбоновых кислот. Многочисленные реакции фторированных производных, найденные в последние годы, свидетельствуют о том, что развитие химии органических соединений фтора еще не завершено и что до сего времени открыты лишь самые основные реакции.
Из органических соединений фтора наибольшее значение имеют те, которые содержат в молекуле значительное число атомов фтора (полифтор- и перфторпроизводные). Эти соединения нашли практическое применение благодаря своей инертности, термической и химической стойкости (хладоагенты, полимерные материалы), а также представляют большой интерес с теоретической точки зрения, так как их поведение значительно отличается от поведения обычных соединений прочих галогенов.
В настоящее время химия органических соединений фтора насчитывает несколько тысяч производных, описанных в таком количестве публикаций, что одному лицу невозможно охватить этот материал в полной мере и с достаточной глубиной. Об этом свидетельствует то обстоятельство, что до сих пор нет исчерпывающей монографии, которая охватывала бы все органические соединения фтора, и что отдельные обзорные статьи обычно весьма узко специализированы.
Номенклатура органических соединений фтора, содержащих лишь один или несколько атомов фтора в молекуле, не вызывает затруднений. Положение атомов фтора обозначается в названии фторпроизводного арабскими цифрами или греческими буквами согласно обычным правилам:
- 1,2,2-трифторпропан,Терминологические трудности возникают лишь при переходе к соединениям, вкоторых число атомов фтора превышает число остальных атомов, связанных с углеродным скелетом, а также у соединений, у которых все атомы водорода замещены фтором.
Обозначение положения отдельных атомов фтора в этих соединениях обычным способом приводит к слишком громоздким названиям:
- 1, 1, 2, 2, 3, 3, 4, 5, 5, 5-декафторпентан, - 1-хлор-1, 2, 2, 3, 3, 3-гексафторпропан.Для тех полифторпроизводных, у которых число атомов водорода в молекуле не превышает четырех, а отношение числа атомов водорода к числу атомов галогена не менее 1:3, было предложено обозначать только общее число атомов фтора, а цифрами указывать положение атомов водорода и прочих галогенов. Рассмотренные соединения по этой системе получают следующие названия:
, -декафторпентан и , 1-хлоргексафторнропан.Для соединений, не содержащих в молекуле ни атомов водорода, ни других галогенов, кроме фтора, было предложено название перфторпроизводных с приставкой «перфтор» перед названием основного незамещенного соединения:
- перфторгептан,Вместо приставки «перфтор» можно пользоваться условным обозначением в виде заглавной греческой буквы
. Выше приведенное соединения будет тогда обозначаться следующим образом: гептан.Этот же способ можно применить также для тех полифторпроизводных, которые содержат один или небольшое число атомов водорода. В таком случае соединение, приведенное первым в схеме, получит название: 1,4-Дигидро-Ф-пентан.
Эта номенклатура вполне однозначная и для перфторпроизводных довольно практична, однако для химика, мало знакомого с химией фтора, она мало понятна. Кроме того, она свидетельствует о недостаточном эстетическом филологическом вкусе ее создателя.
К номенклатуре фторсодержащих соединений относятся также и обычные тортовые названия хладоагентов, состав которых характеризуется системой цифровых обозначений. Фторированные производные метана и этана обычно носят тривиальные названия- фреоны, фригены и т.п., число же атомов фтора и прочих элементов обозначается следующим образом.
Первая цифра обозначает число атомов углерода, уменьшенное на единицу; вторая цифра дает число атомов водорода, увеличенное на единицу; третья цифра указывает число атомов фтора.
Число атомов хлора не указывается.
Производные метана тогда будут обозначаться двузначным числом (нуль опускается), а производные этана - трехзначным, начинающимся с единицы. В качестве примера в табл. I приведены некоторые из наиболее употребительных хладоагентов.
Химическое соединение | Формула | Торговое название |
Фтортрихлорметан | Фреон 11 | |
Дифтордихлорметан | Фреон 12 | |
Трифторхлорметан | Фреон 13 | |
Фтордихлорметан | Фреон 21 | |
Дифторхлорметан | Фреон 22 | |
Трифторметан | Фреон 23 | |
Дифтортетрахлорэтан | Фреон 112 | |
Трифтортрихлорэтан | Фреон 113 | |
Тетрафтордихлорэтан | Фреон 114 | |
Пентафторхлорэтан | Фреон 115 | |
Дифтордихлорэтан | Фреон 132 |
Как можно видеть, не все эти обозначения однозначны. Так, у производных этана не различаются изомеры положения, так как, исходя из эмпирической формулы, например, симметричному и асимметричному дихлортетрафторэтанам даются одинаковые названия. Однако приведенная номенклатура фреонов пользуется широким распространением в латентной технической и торговой литературе.
К способам получения органических соединений фтора мы относим за некоторыми исключениями такие реакции, при которых происходит введение фтора в молекулу.
Хотя фторпроизводные метана и можно получить при фторировании метана элементарным фтором, однако на практике каждое из них получают другими способами. Фтористый метил был получен реакцией йодистого метила с фтористой ртутью и йодом или метилового эфира п-толуолсульфоновой кислоты с фтористым калием. Этим же путем из тридейтерометил-п-толуолсульфоната был получен фтористый тридейтерометил: