К подгруппе меди относятся такие ионы: Hg2+, Cu2+, Bi3+, Cd2+, Pd2+. Сульфиды этих катионов осаждаются не только в соляной, но и нейтральной и в щелочной средах при действии H2S, (NH4)2S или (NH4)2S2 [1].
Все соединения Cu+ или трудно растворимы или образуют устойчивые комплексы [2]. В отличие от других катионов этой подгруппы гидроксиды меди и кадмия легко растворяются в аммиаке.
Все соединения меди можно разделить на следующие группы [3]:
1.Трудно растворимые в воде, но более или менее легко в кислотах (HCl, HNO3).
a) Гидроксид меди;
b) Углекислотные и фосфорнокислые;
c) Основные соли.
2. Трудно растворимые в воде и в кислотах (HCl, HNO3).
а) Сернистые соединения (растворимые в азотной кислоте);
b) СuX (CuCl легко растворима в соляной кислоте).
Вытеснение меди из её солей более активными металлами
Из водных растворов солей меди, медь вытесняется более сильными металлами, стоящими, согласно электрохимическому ряду напряжений, до меди [2, 3, 4, 5, 6, 7].
Взаимодействие с сульфидом аммония или сульфидами натрия и калия
При добавлении по каплям аммиачного раствора сульфата меди к (NH4)2S происходит образование комплекса состава: [NH4][CuS4] [2, 6]. Образование происходит из кислых и нейтральных растворов [3, 8].
Взаимодействии с H2S
Двухвалентная медь из водных растворов солей осаждается сероводородом в виде черного CuS [2, 4, 6, 8]. Выпадение осадка происходит не только в HCl, но и при рН>=7 [6].
Взаимодействие с гидроксидами
При кипячении с водой CuCl взаимодействует с водой с образованием Cu2O [4]. При взаимодействии солей меди Cu2+ со щелочами происходит образование гидроксида меди (2) [2, 3, 4, 5, 6, 8]. Однако при добавлении избытка щелочи происходит растворение с образованием растворимого комплекса. В присутствии тартратов, цитратов, арсенатов гидроксиды не дают с солями двухвалентной меди осадка гидроксида меди (2), а происходит образование темно-синего раствора [4]. Глицерин, винная, лимонная кислоты образуют с медью окрашенные комплексы, из которых медь не осаждается [5]. Растворение гидроксида меди наблюдается при взаимодействии его с NH4OH.
При нагревании гидроксид меди разлагается с образованием CuO.
Взаимодействие с NH4OH
При взаимодействии солей меди (2) с NH4OH происходит выпадение осадка состава Cu2(OH)2SO4 светло-голубого цвета, который растворим в избытке аммиака [3, 4, 5].
Условия проведения: а) рН.=9; b) отсутствие ионов никеля и меди; c) отсутствие восстановителей восстанавливающих Cu2+ до Cu+ (SnCl2, CH2O, мышьяковистая кислота); d) отсутствие солей аммония; e) отсутствие органических соединений связывающих медь в комплекс [6].
Взаимодействии с карбонатом натрия или калия
При взаимодействии солей меди с карбонатом натрия или калия происходит выпадение зеленого осадка растворимого в аммиаке [6, 8].
Взаимодействии с Na2HPO4
При взаимодействии солей меди при рН>=7 с Na2HPO4 наблюдается образование голубого осадка Cu3(PO4)2 растворимого в аммиаке и уксусной кислоте [6].
Взаимодействие с иодидами
При взаимодействии с иодидами, например с иодидом калия протекает реакция, в результате чего в осадок выпадает CuI [2, 3, 4, 5, 6, 7]:
Cu2+ + 2 I- = CuI + 0.5 I2
Реакция протекает в слабокислой среде [7].
Взаимодействии с Na2S2O3
При взаимодействии солей меди с Na2S2O3 при подкислении и кипячении происходит образование осадка Cu2S и S [3, 6].
Электролиз солей меди
При электролизе солей меди на катоде происходит выделение чистой меди [2, 7].
Взаимодействие с роданидами
При взаимодействии солей меди с роданидами наблюдается выпадение в осадок черной соли Cu(SCN)2 [2, 4, 8].
Условие проведения: a) рН<=7; b) слабое нагревание; c) отсутствие ионов серебра [6].
Взаимодействии с Na2HAsO3
При взаимодействии происходит образование желто-зеленого осадка состава Cu3(AsO2)2 [6].
Взаимодействие с MgCl2 + NH4OH + NH4Cl
При взаимодействии солей меди с указанным реагентом наблюдается образование сине-зеленого осадка, растворимого в избытке реагента и в кислотах [6].
Взаимодействие с щавеливой кислотой
При взаимодействии с щавеливой кислотой происходит выпадение в осадок голубой соли, растворимой в сильных кислотах и аммиаке, состава CuC2O4•H2O [2].
Взаимодействие с плавиковой кислотой
При взаимодействии гидроксида меди (2) или карбоната меди (2) с HF происходит образование светло-голубого осадка состава CuF2•2H2O [2].
Взаимодействие с цианидами
При взаимодействии с циан идами солей двухвалентной меди вначале происходит выпадение в осадок соли Cu(CN)2, которая затем распадается с образованием сине-желтого осадка CuCN и выделение (CN)2 [2, 3, 4, 5, 8].
Взаимодействие с K4[Fe(CN)6]
При взаимодействии солей меди с K4[Fe(CN)6] (рН<»7 [5]) происходит связывание меди в нерастворимый красно-коричневый комплекс состава Cu2[Fe(CN)6] [2, 3, 4, 8].
Условия проведения: a) отсутствие Fe3+, Co2+ Ni2+; b) отсутствие окисляющей среды окисляющей Fe2+ до Fe3+; c) отсутствие восстанавливающей среды [6].
При взаимодействии наблюдается образование осадка зеленого цвета [4].
При взаимодействии наблюдается образование осадка фиолетового цвета [5]. Необходимые условия: отсутствие Fe3+, Co2+ Ni2+.
При смешении растворов содержащих соли меди и раствора с SiO32- визуально не наблюдалось взаимодействие.
При смешении растворов содержащих соли меди и раствора с суперфосфатом визуально не наблюдалось взаимодействие.
При взаимодействии иона V2+ с гидроксидами происходит образование осадка коричневого цвета – V(OH)2 [2].
При взаимодействии солей V2+ с избытком KCN в присутствии этилового спирта происходит выпадение в осадок соединения желто-коричневого цвета - K4[V(CN)6] [2].
При взаимодействии с гидроксидами или NH4OH происходит образование зеленого осадка V(OH)3, жадно поглощающего жадно кислород воздуха [2].
При взаимодействии с цианидами протекает образование красных растворимых комплексов состава K3[V(CN)6] [2].
В результате электрохимического восстановления сернокислотных растворов V2O5 протекает до V2(SO4)3•H2SO4•12H2O. При нагревании до 180 °С происходит образование V2(SO4)3 [2].
Из растворов щелочных ванадатов происходит выделение солей желтого цвета состава MeVO4. Взаимодействие происходит в присутствии этилового спирта [2].
При взаимодействии VO3- с гидроксидом аммония происходит образование NH4VO3 [каф. ХТНВ, К и Э]. По данным литературы [6] при обычных условиях осаждение не происходит, но в присутствие ионов Fe3+, Al3+, Ti(4) и др. ион VO3- вместе с ними соосаждается.
Ванадий осаждается из кислых растворов - сероводородом, а из аммиачных - при подкислении осаждается (NH4)2S. [2].
При этом протекают реакции [5]:
2 VO3- + H2S + 6 H+ = 2 VO2+ + S¯ + 4 H2O
VO2+ + (NH4)2S (в среде аммиака) = VOS¯
По данным литературы [6, 8] при использовании в качестве осадителя сульфид аммония происходит осаждение ванадия в виде V2S5:
2 VO3- + 6 (NH4)2S + 6 H2O = 2 NH4VS3 + 10 NH4OH + 2 OH-
2 NH4VS3 + H2SO4 = V2S5¯ + H2S +(NH4)2SO4
При кипячении VO3- с SrCl2 происходит образование желтого осадка солей Sr(VO3)2 + Sr3(VO4)2 [6].
Наблюдается образование ванадата ртути HgVO3, при условии рН=7
[6, 8].
При этом протекает процесс образования осадка желтого цвета по реакции [6]:
VO3- + Ba2+ = Ba(VO3)2
При действии солей серебра на ион VO3- наблюдается образование желтого осадка по реакции [6]:
VO3- + Ag+ = Ag2VO3
При действии солей свинца на ион VO3- наблюдается образование нерастворимых ванадатов свинца [6, 8].
При взаимодействии VO3- наблюдается выпадение рентгеноаморфного осадка содержащего ванадий [каф. ХТНВ, К и Э].
Не изучалось.
При взаимодействии VO3- с твердым NH4Cl при нагревании наблюдается образование NH4VO3 [6, 8].
Не изучалось.
При взаимодействии VO3- с CaCO3 наблюдается снижение концентрации ванадия в растворе. [каф. ХТНВ, К и Э].
Не изучалось.
При взаимодействии VO3- с CaSO4•0.5H2O наблюдается снижение концентрации ванадия в растворе. [каф. ХТНВ, К и Э].