Смекни!
smekni.com

Обезжелезивание воды (стр. 4 из 6)

1) последовательное пропускание растворов через фильтрующую загрузку;

2) тщательное смешивание сухого оксида марганца с песком;

3) смешивание фильтрующей загрузки со свежеполученной суспензией MnO2;

4) последовательное добавление растворов окислителя и восстановителя к песку с тщательным перемешиванием и отстаиванием.

При любом способе обработки песок сильно темнел и становился коричневым за счет образования слоя MnO2. При фильтровании воды по мере расходования оксида марганца песок осветлялся. В момент проскока в слое песка были видны лишь небольшие темные зоны. Удалению катализатора с носителя способствовала повышенная кислотность нашего рабочего раствора (рН ~ 4-5), а также то, что железо присутствовало в сульфатной форме, а не в карбонатной форме, как в большинстве подземных водоисточников.

В очищенной воде рН повышалось до 6, следовательно, часть кислоты тратилась на растворение восстановленных оксидов марганца.

Mn2O3 + 6H+ → 2Mn3+ + 3H2O(10)

или MnO + 2H+ → Mn2+ + H2O(11)

В таблице 3 представлены результаты опытов по использованию загрузок на основе песка для очистки воды от железа.

Из полученных данных следует, что технологические приемы формирования каталитического слоя не влияют на эффективность работы фильтрующих загрузок.

Объем очищенной воды зависит от количества оксида марганца, находящегося в фильтрующем слое. По нашей оценке в загрузках на основе песка объемом 30 мл содержалось примерно 300 мг MnO2, то есть в ~ 7 раз меньше, чем на катионите такого же объема, поэтому и объем воды, очищенной на песчаных фильтрах, был на порядок меньше, чем при использовании катионита.

Можно было бы сделать вывод о целесообразности применения в качестве фильтрующей загрузки чистого препарата MnO2, однако это вещество является мелкодисперсным порошком, и для использования его в качестве фильтрующей загрузки необходимо гранулирование оксида либо использование крупнодисперсного природного минерала (пиролюзит), чтобы скорость фильтрования была приемлемой для эксперимента.

Таблица 3. Очистка воды путем фильтрования через загрузки на основе силикатного песка.

Фильтрующая загрузка объемом 30 мл Объем фильтрованной воды до проскока Fe3+ Объем фильтрованной воды до проскока Fe2+
Чистый песок 0,1 л
Песок, обработанный последовательно пропусканием растворов 1М MnCl2 и 0,5%-ным KMnO4 0,5 л 0,6 л
Песок, содержащий 5% по объему оксида MnO2 0,65 л 0,8 л
Песок, смешанный с суспензией MnO2, полученной из 10 мл этилового спирта и 10 мл 0,5%-ного раствора KMnO4 0,35 л 0,5 л
Песок, смешанный с 20 мл 0,5%-ного раствора KMnO4 и 20 мл 0,5%-ного раствора аскорбиновой кислоты 0,55 л 0,65 л

Наш рабочий раствор по составу не соответствовал белорусским природным железосодержащим водам, так как содержал сульфатное, а не гидрокарбонатное железо, имел повышенную кислотность и концентрацию железа на порядок выше, чем в подземных водозаборах. Тем не менее, определенный объем воды очищался очень качественно.

Логично сделать вывод, что, если раствор эффективно очищается от сульфатного железа, то от гидрокарбонатного он должен очищаться еще эффективнее [11,13]. Мы решили укрупнить масштаб эксперимента и проверить данный вывод на практике.

2. Приготовление и эксплуатация установки обезжелезивания воды

Предлагаемая нами установка по обезжелезиванию воды может использоваться в сельской местности, на даче, в походе, то есть, в тех случаях, когда необходима локальная очистка воды от избытка железа.

Необходимые вещества и материалы:

1) пустая 2-литровая пластиковая бутылка с пробкой;

2) марлевый тампон;

3) отмытый и просеянный песок – объем 0,5 л;

4) 2 пол-литровые банки или бутылки для приготовления растворов;

5) 1 пакетик перманганата калия, масса 5 г, цена – 80 рублей;

6) 2 пакетика аскорбиновой кислоты, масса 1 пакета 2,5 г, цена – 240 рублей.

7) палочка или ложка для перемешивания;

8) стакан для измерения объема растворов;

9) емкость для очищенной воды.

У пластиковой бутылки аккуратно отрезать дно на высоте примерно 4-5 см. Из отрезанного дна получается хорошая крышка от пыли. Чтобы она хорошо одевалась, надо сделать на основной части бутылки несколько вертикальных разрезов длиной примерно 1 см. В горлышко бутылки плотно вставить марлевый тампон.

Бутылку закрепить горлышком вниз с помощью проволоки или веревочной петли. Закрутить пробку, засыпать в бутылку пол-литра подготовленного песка.

Приготовить растворы. Для этого в одной банке растворить пакетик марганцовки в полулитре воды, а в другой – два пакетика аскорбиновой кислоты в таком же объеме воды.

Вылить в бутылку с песком стакан раствора марганцовки, перемешать палочкой для равномерного распределения раствора по всему объему. Добавить туда же стакан раствора аскорбиновой кислоты и сразу же еще раз перемешать. Оставить смесь на полчаса для формирования каталитического слоя. Песок должен приобрести темно-коричневую окраску.

Открыть пробку в нижней части бутылки, слить избыток жидкости до уровня песка. Залить в бутылку воду для очистки от железа. Система готова для фильтрования. Первый литр воды надо вылить, а последующие можно использовать для питья и приготовления пищи.

Признаком отработки катализатора (окончания его действия) является осветление песка, особенно в верхней части загрузки.

В этом случае надо слить воду до поверхности песка и регенерировать каталитический слой, то есть повторить обработку раствором марганцовки и аскорбиновой кислоты, при этом надо уменьшить объемы растворов вдвое (на полстакана раствора марганцовки – полстакана раствора аскорбиновой кислоты).После регенерации фильтрующую загрузку надо промыть 1 литром воды. После промывки установка готова к эксплуатации.

В таблице 4 представлены данные по работе нашей установки до и после регенерации каталитического слоя.

Таблица 4. Очистка воды путем фильтрования через песок с марганцевым катализатором (объем загрузки 500 мл).

Объем фильтрованной воды Содержание Fe3+ в момент проскока Содержание Fe2+в момент проскока
8,0 л8,5 л9,0 л9,5 л10,0 л −−−−− −≤ 3 мг/л~ 5 мг/л~ 7 мг/л~ 10 мг/л
После регенерации катализатора
7,0 л7,5 л8,0 л8,5 л9,0 л −−−−− −≤ 3 мг/л~ 4 мг/л~ 4 мг/л~ 7 мг/л

3. Экономическая оценка предлагаемой нами установки обезжелезивания воды

Из данных, представленных в таблице 4, следует, что наша установка за один цикл очищает примерно 7-8 литров воды, содержащей первоначально 28 мг/л двухвалентного железа. При фильтровании природной воды объем очищенной воды может существенно увеличиться, так как содержание железа в естественных источниках в несколько раз меньше (см. таблицу 1). Таким образом, при полученной продуктивности установки можно рассчитать ее себестоимость и сравнить ее с ценой фильтров, поступающих в продажу.

Суммарная стоимость реагентов для приготовления растворов равна:

80 руб.(5 г KMnO4) + 240 руб.(2,5 г С6Н8О6) + 240 руб.(2,5г С6Н8О6)= 560 руб.

Этого количества хватает на три цикла, то есть примерно для получения 25 литров воды. В настоящее время один из самых дешевых фильтров в Центральном универмаге г. Минска стоит 20 тысяч 130 рублей (фильтр «Аквафор»). Его ресурс – 1000 литров воды. Расчет показывает, что для очистки 1000 литров нашего рабочего раствора на нашей установке надо израсходовать 22 тысячи рублей, для природной воды эта сумма может быть намного меньше. Следовательно, по экономической оценке наша установка может успешно конкурировать с фирменными фильтрами.


Выводы

Таким образом, в результате проделанной работы:

1) выбран способ обезжелезивания воды, наиболее приемлемый для воспроизведения в школьных и бытовых условиях;

2) отработана методика капельного анализа для определения наличия железа в очищенной воде;

3) изучена эффективность действия фильтрующих загрузок с марганцевым катализатором на основе катионита и силикатного песка;

4) изучена возможность формирования каталитического слоя на силикатном песке из веществ, доступных рядовому потребителю;

5) выработаны рекомендации для населения по приготовлению и эксплуатации простейшей установки обезжелезивания воды.


Список используемых источников информации

1. Аткинс Р. Биодобавки. Природная альтернатива лекарствам. ООО «Попурри», Минск, 2004.

2. Белянин Б.В., Эрих В.Н. Технический анализ нефтепродуктов и газа. Изд. «Химия», Ленинград, 1975.

3. Горбачев В.В., Горбачева В.Н. Витамины. Макро- и микроэлементы. Справочник. Книжный Дом Интерпрессервис, Минск, 2002.

4. Горошко Н.Н., Цобкало Ж.А., Ильина Н.И. Методические рекомендации по подготовке к практическому туру олимпиады по химии. Журнал «Хімія: праблемы выкладання», № 2, 2005.

5. Грищенко М., Квитинский А. Влияние сорбции метилоранжа на обменную емкость сульфокатионита. Научно-исследовательская работа по химии. СШ № 64, Минск, 2002 г.

6. Казьмин В. Йод и железо для вашего здоровья. Изд. БАРОпресс, Ростов-на-Дону, 2005.

7. Какова ситуация с питьевой водой в Беларуси в целом? Журнал «Вода», июнь, 2004.

8. Карякин Ю.В., Ангелов И.И. Чистые химические вещества, «Химия», Москва, 1974 г.

9. Ковалев А.Я.. Еще раз об обезжелезивании воды. Журнал «Вода», сентябрь, 2003.

10. Ковалев А.Я. Обезжелезивание воды – что это? Журнал «Вода», июль, 2003.

11. Кульский Л.А. и др. Справочник по свойствам, методам анализа и очистке воды. Часть 2. Изд. «Наукова думка», Киев, 1980.

12. Моисеева Е. Глоток воды во время зноя летнего. Газета «Минский курьер», №195(707), 25.08.05.

13. Николадзе Г.И. Обезжелезивание природных и оборотных вод. Стройиздат, Москва, 1978.