Способность полимеров к вынужденной эластической деформации является их фундаментальным свойством и лежит в основе важнейшего технологического приема, используемого при изготовлении пленок и волокон,— ориентационной вытяжки. В связи с этим холодная вытяжка полимеров служила предметом многочисленных исследований, и в настоящее время она хорошо описана и изучена [1, 2]. Тем не менее, некоторые аспекты этого явления до сих пор остаются неясными, и в первую очередь это касается взаимосвязи между характером кривой растяжения полимера и его структурными перестройками, происходящими в процессе деформирования.
Еще в меньшей степени изучено влияние жидких сред на процесс развития неупругой деформации полимера. В последние годы было установлено, что холодная вытяжка полимеров в жидких адсорбционно-активных средах в структурном плане резко отличается от холодной вытяжки полимера на воздухе [3]. Это отличие легко наблюдать даже визуально. Вместо хорошо известного явления возникновения и распространения по образцу шейки, в адсорбционно-активной среде на первых этапах деформирования не происходит заметного сужения образца, а переход полимера в ориентированное состояние осуществляется внутри большого количества специфических микротрещин, покрывающих всю рабочую часть образца [4].
Особенности зарождения и роста таких микротрещин в этом случае определяют механическое поведение полимера в целом. Значительное число исследований посвящено вопросам возникновения и роста микротрещин, однако лишь в некоторых работах [5—9] сделаны попытки найти взаимосвязь между особенностями роста микротрещин и механическим поведением полимера.
В данной работе приведены результаты исследования процессов возникновения и роста микротрещин при деформировании ПЭТФ в адсорбционно-активной среде с использованием прямых методов исследования — кино- и фотосъемки и сопоставлены полученные данные с макроскопическими механическими свойствами полимера в тех же условиях.
Впервые мысль о взаимосвязи кривой растяжения полимеров с его макроскопическими структурными перестройками была высказана в работах Лазуркина [1]. Визуальные наблюдения образования и роста шейки в полимерах позволили заключить, что «в области спада напряжения происходит формирование шейки. Сечение ее уменьшается, за счет этого возрастает длина. К концу спада напряжения формирование шейки заканчивается и начинается ее рост в длину за счет соседних, мало продеформированных частей образца» [1]. Другими словами, на первом этапе растяжения полимера (в интервале деформаций от предела вынужденной эластичности до выхода кривой растяжения на плато) происходит формирование сравнительно узкой зоны пластически деформированного полимера и ее прорастание через все поперечное сечение испытываемого образца. Дальнейшая деформация осуществляется путем распространения сформировавшейся узкой зоны, называемой шейкой, на всю рабочую часть образца. Как видно, уже в работах Лазуркина имелась возможность изучать скорость распространения зоны пластической деформации полимера, используя кривые растяжения.
Позднее было установлено, что процесс холодной вытяжки полимера в адсорбционно-активной среде, несмотря на отмеченные выше отличия, имеет много общего с хорошо изученным процессом деформации полимера на воздухе [9]. Хотя при растяжении полимера в адсорбционно-активной среде не происходит образования монолитной шейки, пластическая деформация полимера на первых этапах растяжения осуществляется в области вершин специфических микротрещин, прорастающих (так же, как и шейка) через поперечное сечение деформируемого полимера. Такая аналогия позволила определить скорость роста микротрещин или, что то же, скорость распространения зоны пластической деформации в полимере при его растяжении в адсорбционно-активной среде. Действительно, поскольку к моменту выхода динамометрической кривой в область стационарного напряжения большая часть микротрещин успевает прорасти через все поперечное сечение образца, то, фиксируя время выхода динамометрической кривой на плато и зная размеры образца, можно определить некоторую скорость роста микротрещин. Было показано, что скорость роста микротрещин зависит от вязкости и поверхностной активности жидкой среды, а также определяется условиями нагружения полимера [12].
Тем не менее, необходимо отметить, что многочисленные экспериментальные данные по зависимости числа микротрещин, возникающих при деформировании полимера в адсорбционно-активной среде, от степени вытяжки, полученные с помощью световой микроскопии [9] и положенные в основу описанного выше метода определения скорости роста микротрещин из кривых растяжения, являются весьма приблизительными. Эти данные были получены при периодической остановке процесса растяжения полимера; их сопоставляли с деформационными кривыми, полученными в условиях растяжения полимера с постоянной скоростью. В связи с этим в данной работе использовали прибор, с помощью которого можно следить за числом микротрещин и их линейными размерами непосредственно при деформировании полимера в адсорбционно-активной среде с постоянной скоростью, что позволяет корректно сравнить данные структурного исследования и динамометрии.
Прежде всего, следует отметить прямо пропорциональную зависимость длины микротрещин от времени деформирования полимера, т. е. в исследованном интервале скоростей деформирования микротрещины в ПЭТФ растут с постоянной скоростью (рис. 1).
Рис. 1. Типичная картина зависимости длины отдельных микротрещин от времени деформирования ПЭТФ при скорости деформирования 1,67-10-4 м/с
Другая важная особенность полученных данных — значительное различие в скоростях роста отдельных микротрещин. Оказывается, что при деформировании полимера в адсорбционно-активной среде скорость роста микротрещин в зависимости от степени деформации не является постоянной и различия в скоростях роста отдельных микротрещин в одном и том же образце могут достигать значительных величин.
Этот результат позволяет сделать важный вывод о том, что значения скорости роста микротрещин, определяемые из кривых растяжения [12],— некие усредненные величины. Были измерены скорости роста большого числа индивидуальных микротрещин (не менее 200 для каждых условий деформирования), и после статистической обработки эти данные были представлены в виде соответствующих кривых распределения.
На рис. 2 представлены кривые распределений микротрещин по линейным скоростям роста для трех скоростей деформирования. Как видно, кривые распределения асимметричны по форме и имеют четко выраженный максимум, соответствующий наиболее вероятной линейной скорости роста микротрещин.
Хорошо видно, что увеличение скорости деформирования от 8,33 • 10~6 до 1,67-Ю-4 м/с приводит к расширению распределения в область более высоких скоростей.
Полученные результаты представляются весьма важными, поскольку они позволяют получить информацию не только о характере деформации полимера в адсорбционно-активной среде, но и о структуре деформированного полимера.
Действительно, полученные данные подтверждают важную роль микродефектности полимера в его механическом поведении [9, 13]. Проявлением такой неоднородности является, в частности, возникновение шейки в деформируемом полимере в каком-либо одном, самом «опасном» месте.
Наличие распределения скоростей роста микротрещин в деформируемом полимере свидетельствует о существовании в материале набора микродефектов, создающих набор концентраторов напряжения, инициирующих локализованную пластическую деформацию. Эти концентраторы напряжения различаются по «опасности» и вовлекаются в процесс инициирования локализованной пластической деформации, т. е. в процесс зарождения микротрещин при различных уровнях напряжения, запасенных образцом.
В силу замедленности релаксационных процессов, протекающих в стеклообразных полимерах, уровень запасаемых полимером напряжений легко изменять, меняя скорость его деформации.
Как видно из рис. 2, при этом не только возрастает наиболее вероятная линейная скорость роста микротрещин, но и заметно расширяется их распределение, что свидетельствует о вовлечении в процесс деформации множества новых концентраторов напряжения.
Об этом же свидетельствуют данные о количестве микротрещин, возникающих в полимере при различных
Рис. 2. Кривые распределения микротрещин по линейным скоростям роста при деформировании ПЭТФ в этиловом спирте со скоростью 8,33-10~6(1),3,33-10-5(2)и 1,67-10-4 м/с (3)
Рис. 3. Зависимость числа возникающих микротрещин п(а),их линейной скорости роста и напряжения (б)от величины деформации при растяжении ПЭТФ в этиловом спирте со скоростью 8,3310-6(1);З.ЗЗ-10-5(2);1,67-10~4(3); 1,5810-' (4)и на воздухе со скоростью 1,58-10-4 м/с (5)
скоростях его деформирования в адсорбционно-активной среде (рис. 3, а). Хорошо видно, что при всех исследованных значениях деформации большее количество микротрещин возникает в образцах, растягиваемых с большей скоростью, т. е. в условиях, при которых образец находится при более высоком напряжении. Именно это обстоятельство позволяет вовлечь в процесс деформации часть концентраторов напряжения, «безопасных» при меньших скоростях деформации и поэтому неспособных в этих условиях инициировать рождение микротрещины. Более того, уменьшая скорость растяжения в адсорбционно-активной среде, можно достичь условий, при которых в полимере на самом «опасном» дефекте будет зарождаться всего лишь одна микротрещина и макроскопически процесс деформации полимера будет аналогичен его деформации на воздухе [14]. Основное отличие в этом случае будет заключаться в структуре полимера, перешедшего в ориентированное состояние, однако этот вопрос мы не рассматривали в данной работе.