Смекни!
smekni.com

Нуклеофильное замещение у тетраэдрического атома углерода (стр. 2 из 2)

Если в исходном соединении существовала какая-нибудь оптическая конфигурация (D-, L- ), то в результате реакции происходит ее обращение (L-, D-).

В реакции этого типа преимущественно вступают пространственно незатрудненные первичныеалкилгалогениды, при отщеплении уходящей группы от которых не образуется стабилизированного карбкатиона.


6.ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА РЕАКЦИИ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ У НАСЫЩЕННОГО АТОМА УГЛЕРОДА

Факторы (SN1) (SN2)
Строение субстрата Реакционная способность падает в ряду:Бензильный, аллильный > третичный > вторичный > первичный Реакционная способность растет в ряду:Бензильный, аллильный < третичный < вторичный < первичный
Вступающая группа Практически нет влияния Чем больше нуклеофильность, тем вероятнее протекание реакции
Уходящая группа Чем ниже энергия связи, тем легче протекает реакция Замещение затрудняется с увеличением нуклеофильности (основности) уходящей группы
Стерические факторы Увеличение числа алкильных заместителей и электронодонорных групп у нуклеофильного центра способствует протеканию реакции. Препятствуют атаке нуклеофильного центра и затрудняют реакцию
Влияние растворителя Реакции способствуют протонные полярные растворители Влияние растворителя сказывается значительно меньше, но реакцию затрудняют растворители, сольватирующие нуклеофил. В целом, лучше протекают с апротонными полярными растворителя.
Концентрация нуклеофила На скорость реакции не влияет Скорость реакции пропорциональна концентрации нуклеофила

7.Применение реакций нуклеофильного замещения

При помощи этих реакций нуклеофильного замещения может быть замещено большое количество различных групп. Баннетт и Цейлер [68] дали следующий приблизительный порядок легкости замещения групп: _ F> —N02 > —Cl, —Br, — J > —OS02R > — NRt> - OAr > -— OR > - SR, SAr > - S02 R > - NR2.

Значительно менее удовлетворительное положение в отношении свободно-радикального и нуклеофильного замещения. В случаях свободно-радикального замещения доказано существование п- и сг-комплексов, они, по-видимому, участвуют в механизме замещения в ароматических соединениях. Однако отсутствуют пока определенные данные о существовании и стойкости этих промежуточных соединений и сравнительно мало можно сказать о деталях интимного механизма свободно-радикального замещения. В случаях нуклеофильного замещения положение еще менее удовлетворительно, поскольку дело касается замещения «неактивированных» ароматических соединений. В, настоящее время невозможно дать достаточно обоснованного объяснения замещениям этого типа.

В присутствии галоидов или подобных им электроотрицательных заместителей в кольце становится возможной вся область реакций нуклеофильного замещения, которые не идут с самими исходными углеводородами. Эти реакции замещения распадаются, естественно, на два различных класса: 1) класс, включающий замещение «иеактивированных», и 2) класс реакций, в которых замещению подвергается «активированный» заместитель.

Реакции замещения ароматических углеводородов удобно классифицировать с точки зрения электронных представлений о типах замещения. Так, например, промежуточные соединения типа R+ с недостатками электронов стремятся к центрам с высокой плотностью электронов в. молекулах, с которыми они реагируют. Такие промежуточные соединения называются электрофильными (электронно-акцептерными), и реакции замещения, в которых участвуют такие промежуточные соединения, обозначаются как реакции электрофильного заещенияhttp://www.anchemistry.ru/ref/8lektrofil5nogo_zame4eni9.html. Подобным же образом промежуточные соединения типа R~: стремятся к реакционным центрам молекулы с низкой плотностью электронов и называются нуклеофильными. Реакции замещения, включающие участие таких промежуточных соединений, известны как реакции нуклеофильного замещения. Промежуточные соединения в виде свободных радикалов вследствие их электронейтральности мало подвержены влиянию центров большой и малой плотности электронов. Замещения, включающие участие промежуточных соединений в виде свободных радикалов, называются реакциями свободно-радикального замещения.

Из реакций нуклеофильного замещения можно отметить реакции пиридина с амидом натрия и с сухим КОН при 250-300°С (реакции А.Е. Чичибабина):

Реакции замещения в ароматических углеводородах элоктрофиль-ными группами и свободными радикалами рассматривались в предыдущих разделах. Настоящий раздел посвящен обзору нуклеофильного замещения.

Актуальность широко проводимых в Институте химии АН ТадяССР исследований по изучению тиаинданов обусловлена наличием последних в нефтях таджикской депрессии - самой сернистой и смолистой нефти страны. Основные результаты этих работ содержатся в докладе к.х.н. И.И.Насырова и члена-корреспондента АН ТадхССР И.Нуаанова. Ими не только подробно изучены многочисленные извращения I-тиаинданов и их производных, реакции электрофильного, радикального и нуклеофильного замещения, во также синтезированы вещества, обладающие пестицид-шши свойствами, красители, мономеры, стабилизаторы синтетических волокон и т.д.

Нортон относит реакцию замещения водорода металлом к реакциямэлектрофильного замещения, основываясь на убеждении (признанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов . С другой стороны, основываясь на расположении пары электронов углерод-водородной связи, которая разрывается, и связи углерод — металл (ионной), которая образуется , реакция замещения водорода металлом может быть определена как электрофильное замещение. По той же причине гидролиз торе/я-бутилхлорида определяют как реакцию нуклеофильного замещения изомеризации углеводородов проявляется большое число закономерностей, связанных с особенностями реакций нуклеофильного замещения у насыщенного углеродного атома. Так, при относительно высоких скоростях реакции наблюдается стереоспецифичность и стереонаправленность перегруппировок, что указывает на механизм псевдо-5л2-замещения, предполагающий сохранение тетраэдрической структуры карбоний-иона с атакой мигрирующей группы со стороны, противоположной уходящей группе (гидрид-ион).


Заключение

Итак, мы рассмотрели реакции нуклеофильного замещения в тетраэдрическом атоме углерода, рассмотрели два возможных механизма данного процесса, показали, какие факторы влияют на него, а именно: строение субстрата, особенности строения встпающей и уходящей групп, природа растворителя, различные стерические факторы. И, наконец, указали возможные варианты применения реакций данного типа.


Список литературы

1. Т.Беккер. Механизмы электронных процессов в органических соединениях.-М,1969.-687 с.

2. Нейланд О. Органическая химия: учеб. Для хим. спец вузов.- ,М.: Высш. шк., 1990.-751 с.

3. Р. Моррисон, Р. Бойд. Органическая химия.-М.: Мир, 1974.- 1132 с.