Топливо из фруктов
Американские ученые утверждают, что из сахара, который содержится в фруктах, можно получать новый вид топлива. По словам исследователей, это топливо с низким содержанием углерода имеет гораздо больше преимуществ, чем этанол. Открытие было сделано командой специалистов из Университета Висконсина в Мэдисоне, сообщает BBC News. Топливо из фруктозы, названное диметилфураном, способно хранить на 40% больше энергии, чем этанол. Кроме того, оно менее летучее и не так быстро испаряется. Как отмечают изобретатели, фруктозу можно получать напрямую из фруктов и растений или же добывать ее из глюкозы. Теперь ученым предстоит провести ряд исследований, чтобы выяснить, как новое топливо влияет на окружающую среду. Одновременно с открытием американских специалистов британские ученые заявили, что существующие сегодня технологии позволяют производить биологическое топливо не только из пальмового масла, но и из ряда других материалов, включая древесину, сорняки и даже пластиковые пакеты. По мнению экспертов, в ближайшие шесть лет около 30% потребляемого в Великобритании дизельного топлива придется на топливо, полученное из этих источников. И в Соединенных Штатах, и в Европе политики рассматривают биотопливо как способ сократить выбросы углекислого газа в атмосферу и уменьшить зависимость от импортируемой нефти. Однако критики полагают, что из-за биологического топлива, получаемого из зерновых, взлетят цены на продукты питания. По их мнению, возможность производить дизельное топливо из пальмового масла или этанол из кукурузы заставляет фермеров переходить на выращивание только этих культур. Джереми Томкинсон из британского Национального центра по непищевым культурам уверен, что следующее поколение биотоплива будет пригодно не только для автомобилей. Возможно, химикаты, созданные на основе растений, будут использоваться в химической индустрии, а самолеты будут заправляться биодизелем. Но сейчас основным препятствием является дороговизна процесса выработки биотоплива. Так, строительство новых производственных мощностей обойдется в десять раз дороже, чем понадобилось на возведение существующих предприятий по получению биологического топлива.
Немецкие ученые разработали технологию производства дизтоплива из пластиковых отходов
Немецкая компания Clyvia Technology GmbH разработала технологию, которая позволяет преобразовывать отходы масел и пластика, например, полиэтилен и полипропилен, в минеральное топливо. Благодаря этому будет частично решена не только энергетическая проблема, но и проблема ликвидации отходов. Об этом сообщает "Прайм-ТАСС". Процесс, разработанный компанией Clyvia, позволяет переработать неиспользуемое потенциальное сырье, около 11.6 млн. тонн отходов с большим содержанием пластика, в высококачественные горючие и топливные материалы. Инновационная технология основана на процессе фракционированной деполимеризации, который похож на крекинг сырой нефти. При температуре 400 градусов Цельсия (которая гораздо ниже той температуры, что используется при обычном крекинг-процессе, таком как пиролиз) длинные углеводородные цепочки подвергаются разделению, затем выпариваются и осаждаются в конденсаторе в виде дизельного топлива. Планируется, что технология заинтересует как частные, так и государственные компании, оказывающие услуги по ликвидации отходов, а также промышленные и коммерческие предприятия. Новый метод также очень хорошо сочетается с идеей защиты окружающей среды. Планируется, что благодаря инновационной технологии, дизельное и печное топливо станет значительно дешевле чем то, которое все сейчас покупают на АЗС или берут для отопительных систем. С тех пор, как цена на баррель сырой нефти превысила отметку 30 долл., цена на дизельное топливо, производимое из отходов, стала выгодней цены на продукты переработки нефти. И это конкурентное преимущество растет с повышением цены на сырую нефть.
«Самозаживляющийся» полимер
Американские ученые из Университета штата Иллинойс создали новый полимер, способный к самовосстановлению поврежденных участков поверхности.
Исследования в области разработки "самозаживляющихся" материалов ведутся достаточно давно. В частности, уже существуют полимеры, в структуру которых внедрены специальные капсулы с восстанавливающим веществом. Однако у подобных полимеров есть существенный недостаток. Дело в том, что после разрыва капсулы повторное восстановление того же участка становится невозможным. Специалистам из Иллинойского университета удалось решить данную проблему.
Как сообщает RSC.org, ученые предлагают внедрять в структуру материала сеть микроканалов, по которым восстанавливающее вещество может доставляться в любую точку поверхности. В качестве такого вещества используется мономерный дициклопентадиен с низкой вязкостью. Внешнее покрытие полимера содержит катализатор - бензилидин-бис (трициклогексилфосфин) дихлорорутений.
При появлении повреждения на поверхности восстанавливающее вещество через сеть "капилляров" доставляется к нужному участку, где вступает во взаимодействие с катализатором. В результате инициируется реакция полимеризации, в процессе которой на поверхности полимера через некоторое время появляется некое подобие рубца, закрывающего трещину. При повторном повреждении того же участка весь процесс самовосстановления повторяется заново.
Не исключено, что в перспективе технология, предложенная американскими исследователями, найдет самое широкое применение. Материалы, способные к самовосстановлению, могут быть востребованы в аэрокосмической и военной отраслях, медицине, сфере биоинженерии и так далее. Впрочем, о возможных сроках коммерциализации разработанной методики сотрудники Иллинойского университета пока умалчивают.
«Съедобный» пластик
Последняя разработка красноярских ученых еще не вышла из лаборатории, но, по некоторым прогнозам, через полвека экологи смогут вычеркнуть из «черного списка» популярный упаковочный материал.
По словам специалистов, пластик вполне съедобен. Экспериментальный полимер быстро разлагается на безопасные для человека и окружающей среды вещества. Изобретение красноярских ученых может решить проблему длительного - более 300 лет разложения пластика в природе. Так называемый <биопластатан> выращивают в лаборатории Института биофизики.
Синтезируемый материал имеет лучшие свойства полимеров: прочность, легкость и термоплавкость. И при этом, по словам исследователей, вещество лишено главного недостатка неорганического пластика: в отличие от них, биополимеры быстро разрушаются. Сотрудник лаборатории: <Возьмем для примера один тип полимера. Он разлагается в течение 25 суток. Другими словами, понадобится меньше месяца, чтобы это не стало этого вещества>.
Красноярские биофизики научились выращивать биопластатан из глюкозы, газа, бурого угля и бытовых отходов. Бактериям создают специальные условия для синтеза вещества, похожего по своим свойства на обычный пластик. Урожай снимают раз в сутки. С 5 литров специального раствора получается 100 граммов материала. Возможности новинки практически безграничны. Продукты, завернутые в биополимерную пленку, хранятся дольше. Кроме того, бутерброды можно есть, не снимая упаковку. Пленка хоть и безвкусная, но вполне съедобная. По словам исследователей, биополимеры имеют большое будущее в области медицины. С помощью этого материала можно восстанавливать костную ткань, делать сосуды и хирургическую нить.
Владимир Плотников, ведущий инженер лаборатории Института биофизики сибирского отделения РАН: <Дело в том, что обычная хирургическая нить где-то через 7 дней рассасывается в ткани. Однако за неделю ткань не всегда успевает срастись. А наша нить может служить более длительное время>.Пока получаемый в лабораторных условиях биополимер раз в 5 дороже искусственных пластиков, и это отпугивает предпринимателей. По этой причине опытная линия по производству биопластатана в Краноярске простаивает. Но ученые надеются, что их изобретения рано или поздно оценят по достоинству. Сейчас биотехнология бурно развивается во всем мире. Специалисты говорят, через 50 лет биологический пластик полностью заменит искусственный.
«Стеклянная» сталь
Ученые из Окриджской лаборатории изобрели новый, необычный тип стали, более похожий на стекло, чем на металл. Этот материал необычно прочен, а его разработчики надеются использовать его для создания медицинских имплантатов или более легких самолетов. В обычных металлах атомы расположены в определенном, кристаллическом порядке, в аморфных твердых веществах, например, стекле, атомы размещаются хаотично; здесь они напоминают атомы в жидкости, за исключением того, что более или менее зафиксированы на месте. Металлы с такой хаотичной структурой, как правило, тверже и прочнее своих кристаллических собратьев, поэтому они очень привлекательны для инженеров. Однако, как правило, аморфные металлы очень дороги. Существующие на рынке варианты состоят по преимуществу из циркония и палладия. Аморфная версия стали, сделанная на основе железа, могла бы значительно снизить цену - по расчетам авторов нового изобретения примерно с 0 до за килограмм. Это все равно значительно дороже обычной стали, поэтому вряд ли ее начнут в ближайшее время использовать для металлоконструкций. Однако она может найти применение при изготовлении специальных прочных покрытий для промышленных станков, спортивного инвентаря типа теннисных ракеток и клюшек для гольфа и прочных медицинских эндопротезов. Аморфную сталь изготавливали и раньше, но только в маленьких количествах. При попытках получить из этой стали блоки с длиной сторон более 4 мм, происходила кристаллизация части сплава, в результате уменьшалась его твердость и прочность. Чжао Пин Лю и его коллеги нашли способ избавиться от этой проблемы. Ключом оказалась правильная смесь добавок к железу. Сталь состоит в основном из железа с небольшим количеством углерода, но в большинство производимой стали добавляются также маленькие количества других элементов, например, хрома, содержащегося в нержавеющей стали. Исследователи получили смесь железа с хромом, марганцем, молибденом, углеродом, бором и иттрием. Сплавы, содержащие около 1.5% иттрия, остаются в расплавленном состоянии при значительно более низкой температуре, что способствует сохранению аморфной структуры при отвердевании металла. Кроме того, иттрий сдерживает рост кристаллов карбида железа, которые иначе появляются при остывании сплава и способствуют общей кристаллизации стали. Пока группа Лю получила бруски шириной 12 мм (предел в лабораторных условиях), но исследователи полагают, что они могут быть гораздо больше. У аморфной стали есть и еще одно привлекательное свойство - она притягивается к магниту только при очень низких температурах. Ученые ожидают, что такой немагнитящейся сталью заинтересуются военные.