Углеводород | Формула | Температура,°К | ||
291 | 100 | 1200 | ||
Гексан Циклогексан Гексен-1 Бензол | С6Н14 С6Н12С6Н12С6Н6 | -0,29 31,1 17,6 129,9 | 317,9 221,2 | 554,9 300,5 |
Метан Этан Пропан Бутан | СН4С2Н6С3Н1С4Н10 | -50,1 -32,9 -23,5 -17,1 | -2,3 66,6 127,4 115,0 | 41,0 151,6 255,4 355,1 |
2 Термодинамическая устойчивость углеводородов всех классов понижается с ростом температуры, но в различной степени, поэтому при высокой температуре (температуре крекинга) положение углеводородов в ряду термической устойчивости меняется (рис. 1.5):
CnH2n-6>CnH2n>∆CnH2n>CnH2n+2 .
3 Термическая устойчивость углеводородов одного класса падает с увеличением их молекулярной массы (числа атомов углерода) (рис. 1.6).
Таким образом, при температуре крекинга в первую очередь деструкции подвергаются алканы и нафтены преимущественно с высокой молекулярной массой, а наиболее устойчивыми являются ароматические углеводороды и алкены. В результате в продуктах крекинга накапливаются ароматические углеводороды и низшие алкены, которые затем вступают во вторичные реакции полимеризации.
Реакции превращения углеводородов нефтяного сырья при крекинге могут быть сведены к следующим типам.
CqH2q+2+CxH2x ,
где: п = т + р; т = q + х .
При этом, в соответствии с рядом термической устойчивости, из продуктов реакции деструктируются далее в первую очередь алканы. Для низших алканов помимо реакции деструкции по связи С-С, энергия которой равна 315—370 кДж/моль, становится возможной и реакция дегидрирования с разрывом связи С-Н, энергия которой составляет 310—410кДж/моль и становится соизмеримой с первой. Поэтому в газе крекинга всегда содержится водород.
2 Превращения нафтенов, в том числе реакции:
дегидрирования
,деалкилирования
,гидрирования с разрывом цикла
.3 Превращения алкенов, в том числе реакции: деструкции с образованием низших алкенов, алканов и алкадиенов
CnH2n→2Cn/2Hn и CnH2n→CmH2m+2+CpH2p-2,
изомеризации R-CH=CH-CH3 → R-C=CH2,
СН3полимеризации CnH2n→C2nH4n .
4. Синтез и превращения ароматических углеводородов по реакциям конденсации алкенов и алкадиенов, например
,► т |
-►т |
Рис. 1.7 - Зависимость выхода бензина при крекинге от температуры (а), времени контактирования (б) и давления (в)
1.6.З Каталитический крекинг нефтепродуктов
Крекинг нефтяного сырья в присутствии катализаторов (каталитический крекинг) имеет ряд особенностей, которые обусловили широкое использование его в нефтеперерабатывающей промышленности для производства моторных топлив. К этим особенностям относятся:
—высокая скорость процесса, в 500—4000 раз превышающая скорость процесса термического крекинга;
—увеличенный выход бензинов с большим содержанием изоалканов и малым содержанием алкенов, характеризующихся высоким октановым числом и стабильностью при хранении;
—большой выход газообразных продуктов, содержащих углеводороды C1—C4, являющихся сырьем для органического синтеза.
К катализаторам, используемым в каталитическом крекинге, предъявляются следующие требования:
—селективность;
—высокая активность при температуре крекинга,
—стабильность активности;
—устойчивость к истиранию, действию высоких температур и водяного пара.
Мерой активности катализатора при крекинге является «индекс активности», определяемый экспериментально на лабораторных установках. Индекс активности равен выходу бензина, перегоняющегося до 200°С при крекинге эталонного сырья в стандартных условиях.
Стабильностью катализатора называется его способность сохранять свою активность во время эксплуатации. Катализаторы каталитического крекинга достаточно быстро дезактивируются вследствие отложения на поверхности зерен кокса и нуждаются в регенерации.
В каталитическом крекинге в качестве катализаторов ранее применялись природные глины с содержанием оксида алюминия до 25% и индексом активности около 35. В настоящее время все установки каталитического крекинга работают на синтетических алюмосиликатных катализаторах, содержащих в своем составе цеолиты с индексом активности около 50: nNa2O·mAl2O3·pSiO2·qH2O. Селективность катализатора может быть повышена введением в его состав оксида рения.
Носителем активности подобных катализаторов является гидратированный алюмосиликат HAlO2·SiO2, сохраняющий активность до 700°С. Все реакции, протекающие на поверхности алюмосиликатного катализатора, имеют цепной характер. Последовательность реакций крекинга углеводородов различных классов определяется скоростью адсорбции их на зернах катализатора, так как при температуре крекинга процесс идет в диффузионной области и лимитируется скоростью диффузии молекул сырья к поверхности катализатора. При этом ароматические углеводороды деалкилируются с образованием алке-нов и простейших ароматических углеводородов, нафтены дегидрируются, деалкилируются и расщепляются с разрывом цикла. Алкены, образовавшиеся при крекинге, деструктируют-ся, изомеризуются и гидрируются с образованием циклических и ароматических углеводородов.
Важнейшим направлением превращений при каталитическом крекинге являются реакции алканов, которые подвергаются реакциям деструкции и изомеризации. Последовательность реакций алканов на алюмосиликатном катализаторе может быть представлена в следующем виде.
1 Протонирование катализатора:
HAlO2·SiO2↔HAlSiO4↔H+ + AlSiO4-
.
2 Дегидрирование алкана до алкена под воздействием тер мического фактора:
R-CH2-CH2-CH3 ↔R-CH=CH-CH3 + Н2
3 Образование вторичного карбкатиона:
R-CH=CH-CH3 + H+ ↔ R-C+h-CH2-CH3
4 Превращение вторичного карбкатиона по двум схемам:
1) крекинг до алкена: