Пасты
Пасты – это высоко концентрированные суспензии, обладающие структурой. Структура – это пространственная сетка, образованная частицами дисперсной фазы, в петлях которой находится дисперсионная среда.
Можно сказать, что пасты занимают промежуточное положение между порошками и разбавленными суспензиями. Их получают, соответственно:
растирая порошок в жидкости, обладающей достаточно большой вязкостью; например, некоторые сорта зубной пасты готовят путем смешивания мела с вязкой жидкостью, полученной путем варки крахмала в глицериновом водном растворе с добавлением небольшого количества ПАВ;
в результате седиментации разбавленной суспензии.
Так как пасты – структурированные системы, определяющим является их структурно – механические свойства, которые характеризуются такими параметрами, как вязкость, упругость, пластичность. Пасты обладают упруговязкопластическими свойствами.
Пасты имеют коагуляционную структуру, поэтому их механические свойства определяются, главным образом, механическими свойствами межчастичных жидких прослоек. Через эти прослойки действуют силы притяжения между частицами, зависящие от расстояния между ними (толщина прослоек) и обусловлена ван – дер – ваальсовыми и водородными связями. Прочность коагуляционного контакта составляет величину порядка 10-10 Н и ниже. Причем, прочность контакта могут уменьшать силы отталкивания между частицами, обеспечивающими агрегатную устойчивость суспензии, именно по этому структуры в агрегативно устойчивых суспензиях не образуются или, если и образуются, то очень непрочные.
Таким образом, механические свойства паст обусловливаются совокупностью двух различных основных причин:
· молекулярным сцеплением частиц дисперсной фазы друг с другом в местах контакта, там, где толщина прослоек дисперсионной среды между ними минимальна. В предельном случае возможен полный фазовый контакт. Коагуляционное взаимодействие частиц вызывает образование структур с выраженными обратимыми упругими свойствами;
· наличие тончайшей пленки в местах контакта между частицами.
Коагуляционные структуры отличаются резко выраженной зависимостью структурно – механических свойств от интенсивности механических взаимодействий. Примером исключительной чувствительности структурно механических свойств коагуляционных структур к механическим воздействиям является зависимость равновесной эффективной вязкости h(р) от скорости деформации g или напряжения сдвига Р. Уровень h(р) отвечает вполне определенной степени разрушения трехмерного структурного каркаса в условиях деформации системы. Диапазон изменений h(р) = ¦(Р) может достигать 9 – 11 десятичных порядков.
Для паст, так же как и для любой коагуляционной структуры, характерны следующие свойства: невысокая механическая прочность (обусловлена малой прочностью коагуляционного контакта – порядка 10-10 Н и ниже), тиксотропия, синерезис, ползучесть, пластичность, набухание.
Никакие массообменные процессы в структурированных системах нельзя осуществить, не разрушив предварительно в них структуру.
Разрушение пространственных структур в пастах – достаточно сложный процесс, характеризуемый тем, что по мере увеличения степени разрушения существенно изменяется и сам механизм распада структуры.
Можно выделить три основных этапа разрушения структуры:
разрушение сплошной структуры сетки, сопровождающиеся распадом структуры на отдельные, достаточно крупные агрегаты;
разрушение агрегатов, сопровождается уменьшением их размера и увеличением их числа, высвобождением из агрегатов и увеличением числа отдельных частиц, образованием новых агрегатов;
предельное разрушение структуры при полном отсутствии агрегатов из частиц.
Четкая граница между этими этапами размыта, т.е. переход из одного состояния структуры в другое по мере постепенного увеличения интенсивности внешних воздействий, разрушающих структуру, происходит постепенно.
Однако каждый из этих этапов специфичен, условия разрушения сплошной структурной сетки кардинальным образом отличаются от условий разрушения агрегатов, «плавающих» в дисперсионной среде, а значит, и параметры внешних воздействий, необходимых для разрушения сплошной структурной сетки и отдельных агрегатов их частиц, не могут не быть существенно различными.
Количественно изменения состояния структуры пасты оценивается совокупностью реологических характеристик, прежде всего вязкостью h, напряжением сдвига Р, упругостью Е и периодом релаксации q. Наиболее резкое, на много десятичных порядков, изменения с разрушением структуры претерпевают вязкость и период релаксации.
Для разрушения структуры используются следующие воздействия:
· механическое помешивание;
· вибрация с частотой от 10 Гц до10 кГц;
· ультразвук;
· нагревание;
· электрические и магнитные поля;
изменение природы поверхности твердых частиц (главным образом, путем добавления коллоидных ПАВ).
Часто сочетают механические вибрационные воздействия с ультразвуком, тепловыми воздействиями.
Такое сочетание не только существенно меняет энергию активации процесса разрушения структуры, но в значительной степени сказывается на свойствах конечного продукта.
Совместное действие на пасту вибрации и, например, ультразвука приводит к гораздо большему разрушению структуры и вместе с тем к достижению существенно более высокой ее однородности, чем под влиянием каждого из этих видов воздействия с той же интенсивностью в отдельности.
Важным является сочетание механических воздействий с физико–химическим управлением прочностью сцепления в контактах между частицами путем изменения природы поверхности частиц.
Модифицирование твердых фаз добавками ПАВ различного строения является универсальным методом регулирования силы и энергии взаимодействия в контактах между частицами. Этот эффект – следствие сочетания двух факторов:
раздвижения частиц на двойную толщину адсорбционного слоя;
снижение поверхностного натяжения на поверхности частиц.
В последние годы все шире стали применяться методы модифицирования поверхности частиц не индивидуальными ПАВ, а смесями ПАВ различных видов, например, иогенных и неиогенных.
При правильном подборе нескольких видов ПАВ обнаруживается синергизм, т.е. взаимные усиления их действия.
Исключительная эффективность совместного действия вибрации и ПАВ объясняется характером разрушения структуры при вибрации и особенностями действия ПАВ. ПАВ, адсорбируются в первую очередь на наиболее энергетически активных участках микромозаичной поверхности частиц, ослабляют преимущественно наиболее прочные коагуляционные контакты. Введение в систему ПАВ из расчета образования монослоя на поверхности частиц позволяет почти в 500 раз понизить интенсивность вибрации, необходимую для достижения предельного разрушения структуры.
Не менее эффективно для ряда систем сочетание вибрации, добавок ПАВ и температурных воздействий. В тех случаях, когда вязкость структурированных систем весьма чувствительна к изменению температуры, такое комплексное взаимодействие наиболее целесообразно. Многие пищевые, в особенности кондитерские массы (шоколадные, пралиновые и т.п.), относятся именно к такого рода системам.
Эмульсии
Эмульсия – система «жидкость – жидкость» (ж/ж). Для образования эмульсии обе жидкости должны быть нерастворимы или мало растворимы друг в друге, а в системе должен присутствовать стабилизатор, называемый эмульгатором. Эмульсия тем седиментационно устойчивее, чем ближе плотность обоих фаз. Отличительной особенностью эмульсий является сферическая форма частиц (капель).
Эмульсии классифицируются:
1. По состоянию дисперсной среды и дисперсной фазы.
Различают:
- масло в воде
- вода в масле
Для эмульсий характерным является свойство обращения фаз. При введении в эмульсию в условиях интенсивного перемешивания большого количества поверхностно-активных веществ (ПАВ), являющегося стабилизатором эмульсии противоположного типа, первоначальная эмульсия может обращаться, т.е. дисперсная фаза становится дисперсионной средой и наоборот (масло + вода = вода + масло)
2. По концентрации:
а) Разбавленные 0,01 – 0,1%;
б) Концентрированные до 74%;
в) Высоко концентрированные до 90%.
Все эмульсии термодинамически нестабильные структуры, за исключением критических эмульсий. Это структуры двух ограниченно растворимых жидкостей при температуре, близкой к критической.
Седиментационная устойчивость эмульсий аналогична суспензиям. Агрегативная неустойчивость проявляется в самопроизвольном образовании агрегата капелек с последующим их слиянием (коалесценция). Количественно это характеризуется скоростью расслоения или временем жизни отдельных капелек в контакте с другими. Агрегативная устойчивость определятся следующими факторами:
· Соотношением поверхностного натяжения на поверхности раздела фаз;
· Присутствием в растворе электролита. Поэтому прямые эмульсии, стабилизированные мылами, характеризуются всеми свойствами, присущими типичным гидрозолям, т.е. соблюдается правило Шульце – Гарди, перезаряжание частиц поликовалентными ионами и т.д.
· Наличием эмульгатора.
Стабилизация эмульсии с помощью поверхностно-активных веществ (ПАВ) обеспечивается благодаря адсорбции и определенной ориентации молекулы поверхностно-активного вещества (ПАВ), что вызывает понижение поверхностного натяжения. Кроме этого поверхностно-активные вещества (ПАВ) с длинными радикалами на поверхности капелек могут образовывать пленки значительной вязкости (структурно-механический фактор). Для эмульгаторов справедливо правило Ван – Крофта: эмульгаторы, растворимые в углеводороде, образуют эмульсии типа «вода в масле»; эмульгаторы, растворимые в воде, образуют эмульсии типа «масло в воде».