Ca(OH)2 | + | CO2 | = | CaCO3 | + | H2O |
карбонаткальция |
CaO | + | SO3 | = | CaSO4 |
сульфат кальция |
Этот способ подходит, например, в том случае, если образуется нерастворимая соль, выпадающая в осадок:
Например:
H2S | + | CuCl2 | = | CuS (осадок) | + | 2 HCl |
сульфид меди |
Для таких реакций подходят только щелочи (растворимые основания). В этих реакциях образуется другое основание и другая соль. Важно, чтобы новое основание не было щелочью и не могло реагировать с образовавшейся солью.
Например:
3 NaOH | + | FeCl3 | = | Fe(OH)3 | + | 3 NaCl |
(осадок) | хлорид натрия |
Реакцию удается провести только в том случае, если хотя бы одна из образующихся солей нерастворима и выпадает в осадок:
Например:
AgNO3 | + | KCl | = | AgCl (осадок) | + | KNO3 |
хлорид серебра | нитрат калия |
Выпавшую в осадок соль отфильтровывают, а оставшийся раствор выпаривают и получают другую соль. Если же обе образующиеся соли хорошо растворимы в воде, то реакции не происходит: в растворе существуют лишь ионы, не взаимодействующие между собой:
NaCl + KBr = Na+ + Cl- + K+ + Br-
Если такой раствор выпарить, то мы получим смесь солей NaCl, KBr, NaBr и KCl, но чистые соли в таких реакциях получить не удается.
В способах 1-7 имели дело с реакциями обмена (только способ 4 – реакция соединения). Но соли образуются и в окислительно-восстановительных реакциях. Например, металлы, расположенные левее водорода в ряду активности металлов, вытесняют из кислот водород и сами соединяются с ними, образуя соли:
Fe | + | H2SO4(разб.) | = | FeSO4 | + | H2 |
сульфат железа II |
Эта реакция внешне напоминает горение. Металл "сгорает" в токе неметалла, образуя мельчайшие кристаллы соли, которые выглядят, как белый "дым":
2 K | + | Cl2 | = | 2 KCl |
хлорид калия |
Более активные металлы, расположенные в ряду активности левее, способны вытеснять менее активные (расположенные правее) металлы из их солей:
Zn | + | CuSO4 | = | Cu | + | ZnSO4 |
порошок меди | сульфат цинка |
Соли представляют собой твердые кристаллические вещества. Соли имеют широкий диапазон температур плавления и термического разложения.
По растворимости в воде различают растворимые, мало растворимые и практически нерастворимые соли. К растворимым относятся почти все соли натрия, калия и аммония, многие нитраты, ацетаты и хлориды, многие кислые соли.
Растворимость солей в воде при комнатной температуре
Кати- оны | Анионы | |||||||||
F- | Cl- | Br- | I- | S2- | NO3- | CO32- | SiO32- | SO42- | PO43- | |
Na+ | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р |
K+ | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р |
NH4+ | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р |
Mg2+ | РК | Р | Р | Р | М | Р | Н | РК | Р | РК |
Ca2+ | НК | Р | Р | Р | М | Р | Н | РК | М | РК |
Sr2+ | НК | Р | Р | Р | Р | Р | Н | РК | РК | РК |
Ba2+ | РК | Р | Р | Р | Р | Р | Н | РК | НК | РК |
Sn2+ | Р | Р | Р | М | РК | Р | Н | Н | Р | Н |
Pb2+ | Н | М | М | М | РК | Р | Н | Н | Н | Н |
Al3+ | М | Р | Р | Р | Г | Р | Г | НК | Р | РК |
Cr3+ | Р | Р | Р | Р | Г | Р | Г | Н | Р | РК |
Mn2+ | Р | Р | Р | Р | Н | Р | Н | Н | Р | Н |
Fe2+ | М | Р | Р | Р | Н | Р | Н | Н | Р | Н |
Fe3+ | Р | Р | Р | - | - | Р | Г | Н | Р | РК |
Co2+ | М | Р | Р | Р | Н | Р | Н | Н | Р | Н |
Ni2+ | М | Р | Р | Р | РК | Р | Н | Н | Р | Н |
Cu2+ | М | Р | Р | - | Н | Р | Г | Н | Р | Н |
Zn2+ | М | Р | Р | Р | РК | Р | Н | Н | Р | Н |
Cd2+ | Р | Р | Р | Р | РК | Р | Н | Н | Р | Н |
Hg2+ | Р | Р | М | НК | НК | Р | Н | Н | Р | Н |
Hg22+ | Р | НК | НК | НК | РК | Р | Н | Н | М | Н |
Ag+ | Р | НК | НК | НК | НК | Р | Н | Н | М | Н |
Условные обозначения:
Р — вещество хорошо растворимо в воде; М — малорастворимо; Н — практически нерастворимо в воде, но легко растворяется в слабых или разбавленных кислотах; РК - нерастворимо в воде и растворяется только в сильных неорганических кислотах; НК - нерастворимо ни в воде, ни в кислотах; Г - полностью гидролизуется при растворении и не существует в контакте с водой. Прочерк означает, что такое вещество вообще не существует.
В водных растворах соли полностью или частично диссоциируют на ионы. Соли слабых кислот и (или) слабых оснований подвергаются при этом гидролизу. Водные растворы солей содержат гидратированные ионы, ионные пары и более сложные химические формы, включающие продукты гидролиза и др. Ряд солей растворимы также в спиртах, ацетоне, амидах кислот и др. органических растворителях.
Из водных растворов соли могут кристаллизоваться в виде кристаллогидратов, из неводных - в виде кристаллосольватов, например СаВг2 • ЗС2Н5ОН.
Данные о различных процессах, протекающих в водносолевых системах, о растворимости солей при их совместном присутствии в зависимости от температуры, давления и концентрации, о составе твердых и жидких фаз могут быть получены при изучении диаграмм растворимости водно-солевых систем.
Наиболее распространенные реакции солей – реакции обмена и окислительно-восстановительные реакции. Сначала рассмотрим примеры окислительно-восстановительных реакций.
Поскольку соли состоят из ионов металла и кислотного остатка, их окислительно-восстановительные реакции условно можно разбить на две группы: реакции за счет иона металла и реакции за счет кислотного остатка, если в этом кислотном остатке какой-либо атом способен менять степень окисления.
а) Реакции за счет иона металла.
Поскольку в солях содержится ион металла в положительной степени окисления, они могут участвовать в окислительно-восстановительных реакциях, где ион металла играет роль окислителя. Восстановителем чаще всего служит какой-нибудь другой (более активный) металл. Приведем пример:
Hg2+SO4 | + | Sn0 | = | Hg0 | + | Sn2+SO4 |
соль менее активного металла (окислитель) | более активный металл (восстановитель) |
Принято говорить, что более активные металлы способны вытеснять другие металлы из их солей. Металлы, находящиеся в ряду активности левее, являются более активными.
б) Реакции за счет кислотного остатка.
В кислотных остатках часто имеются атомы, способные изменять степень окисления. Отсюда – многочисленные окислительно-восстановительные реакции солей с такими кислотными остатками.
Например:
Na2S–2 | + | Br20 | = | S0 | + | 2 NaBr–1 |
соль сероводородной кислоты | сера |
2 KI–1 | + | H2O2–1 | + | H2SO4 | = | I20 | + | K2SO4 | + | 2 H2O–2 |
соль иодоводородной кислоты | иод |
2 KMn+7O4 | + | 16 HCl–1 | = | 5 Cl20 | + | 2 KCl | + | 2 Mn+2Cl2 | + | 8 H2O |
соль марганцевой кислоты | хлорид марганца |
2 Pb(N+5O3–2)2 | = | 2 PbO | + | 4 N+4O2 | + | O20 |
соль азотной кислоты | при нагревании |
Такие реакции могут происходить, когда соли реагируют: