Для расчета оптимальных рабочих параметров процесса необходимо иметь данные о фазовом равновесии в исследуемой системе. Физико – химические свойства чистых веществ приведены в таблице 3.1.
Таблица 3.1.
Физико – химические свойства компонентов.
Компонент | Структурная формула | Молекулярная масса | Плотность,г/мл | ТКИП,ОС |
Метилэтилкетон | CH3COC2H5 | 72,104 | 0,805 | 79,60 |
Толуол | C6H5CH3 | 92,140 | 0,8669 | 110,63 |
Этилцеллозольв | C2H5OCH2CH2OH | 90,120 | 0,9311 | 135,10 |
В смеси этилцеллозольв – толуол имеется азеотроп с минимумом температуры кипения (Тазкип=110,15ºC, содержание этилцеллозольва–10,8% мас.) [2]. Для моделирования фазового равновесия использовали уравнение Вильсона, параметры которого приведены в [2] (см. таблицу 3.2.).
Таблица 3.2.
Параметры уравнения Вильсона.
Л12 | Л21 | |
Метилэтилкетон–толуол | 0,9175 | 0,7636 |
Метилэтилкетон–этилцеллозольв | 0,2121 | 1,7940 |
Толуол–этилцеллозольв | 0,1099 | 0,7865 |
Уравнение Антуана представлено в виде:
LgP=A–(B/C+T), где Р– давление в мм.рт.ст.; Т– температура в ОС; А,В,С– коэффициенты уравнения Антуана (таблица 3.3.).
Таблица 3.3.
Коэффициенты уравнения Антуана.
Компонент | А | В | С |
Метилэтилкетон | 7,2476 | 1419,294 | 245,436 |
Толуол | 6,9551 | 1345,090 | 219,520 |
Этилцеллозольв | 7,5453 | 1445,030 | 178,099 |
Наша работа основана на исследованиях, проведённых автором [2]. В работе был исследован процесс экстрактивной ректификации смеси толуол– этилцеллозольв состава, близкого к азеотропному, с легкокипящим разделяющим агентом (метилэтилкетон). На основании теоретического обоснования, было высказано предположение, что возможны два варианта проведения процесса (с разновысотной подачей агента и смеси, и с однотарелочной подачей). Проведенные эксперименты (по колонне экстрактивной ректификации) подтвердили правильность этого предположения.
Для проверки адекватности описания данной системы и возможности проведения дальнейших расчетов в программном комплексе PRO/II, по данным работы [2] был проведен проверочный эксперимент. Результаты и схема приведены ниже.
а бРис.3.1. Колонна с разновысотной (а) и однотарелочной (б) подачей смеси и разделяющего агента.
Таблица 3.4.
Режим и результаты лабораторных опытов и расчетов (смесь МЭК– Т– ЭЦ ).
Подача смеси и агента | Питание | Агент | R | n/l/m | Верхний продукт, масс.% | Кубовый продукт | ||||
Поток, кг/ч | Состав,масс.% | Поток, кг/ч | Состав, масс.% | Поток, кг/ч | Состав,масс.% | |||||
Разновысотная | Эксп-т | 100 | 0– 72,6– 27,4 | 242 | 99,5– 0,5– 0 | 0,5 | 4/16/4 | 77,5– 22,5– 0 | 26,0 | 0– 0,8– 99,2 |
Расчет | 100 | 0– 72,6– 27,4 | 242 | 99,5– 0,5– 0 | 0,5 | 4/16/4 | 78,3– 20,2– 1,5 | 26,2 | 0,7– 0,2– 99,1 | |
Однотарелочная | Эксп-т | 100 | 0– 72,6– 27,4 | 273 | 99,5– 0,5– 0 | 0,5 | 12/0/12 | 77,4– 22,5– 0,1 | 25,8 | 0– 0,3– 99,7 |
Расчет | 100 | 0– 72,6– 27,4 | 273 | 99,5– 0,5– 0 | 0,5 | 12/0/12 | 75,9– 23,2– 0,9 | 26,1 | 0,1– 0,3– 99,6 |
где n, l и m– число теоретических тарелок в укрепляющей, реэкстракционной и исчерпывающей секциях.
Нужная воспроизводимость была достигнута, что позволило нам продолжить дальнейшие расчеты.
При фиксированном количестве, составе, температуре исходной смеси энергозатраты в кубах колонн определяются несколькими параметрами, а именно: флегмовыми числами в колонне экстрактивной ректификации и колонне регенерации агента, температурой и расходом экстрактивного агента.
Флегмовые числа в колоннах зависят от положения тарелок питания и подачи агента.
В колонну экстрактивный агент обычно подают при температуре кипения. Проведенные ранее расчеты для экстрактивной ректификации показали, что с увеличением температуры подачи агента в колонну, энергозатраты в кипятильнике снижаются. С другой стороны, чем при более высокой температуре агент подается в экстрактивную колонну, тем меньше тепла можно получить за счет его охлаждения. Таким образом, для точного определения температуры подачи агента в колонну, необходимо провести технико-экономический расчет схемы. На данном этапе для снижения размерности задачи оптимизации мы приняли ТЭА=80ºC (температура кипения экстрагента, подаваемого в колонну). Это позволит использовать его тепло в производственных нуждах, например для подогрева исходной смеси.
Таким образом, для обеспечения минимальных энергозатрат в кубе основной колонны нам необходимо найти оптимальное сочетание следующих рабочих параметров процесса:
1) удельный расход экстрактивного агента;
2) положение тарелок питания;
3) положение тарелки подачи экстрактивного агента.
Так как все эти параметры взаимосвязаны между собой, мы проводили расчеты в несколько этапов. Количество исходной смеси составило 100 кг/ч, концентрация этилцеллозольва в питании 27,4% массовых. Эффективность основной колонны– 26 т.т., эффективность колонны регенерации– 23 т.т. Концентрация этилцеллозольва в продуктовом потоке - 99,0% масс., хлороформа– 99,0% масс., ДМФА– 99,0% масс.. Расчет фазового равновесия проводили по модели Вильсона, параметры которой приведены выше.
Сначала мы провели расчет, целью которого было определение оптимального положения тарелок питания и отбора при соотношении F:ЭА = 1:3,5 и количестве БО=150 кг/час.
5.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.
1. Айнштейн В.Г., Захаров М.К., Носов Г. А. и др. Общий курс процессов и аппаратов химической технологии, в 2 книгах, книга 2. Под ред. проф. Айнштейна В.Г. М.: Химия, 2000. 1760 с.
2. Диссертация
3. Тимофеев В.С., Серафимов Л.А. Принципы и технологии основного органического и нефтехимического синтеза.М. : «Высшая школа» 2003. –536 с.
4. Коган В.Б. Азеотропная и экстрактивная ректификация. - Л.: Химия, 1971, 432 с.
5. Патент 2213721 Способ разделения С4–углеводородных фракций. Россия, МПК С07С7/08. ОАО «Нижнекамскнефтехим», Борейко Н.П., Яфизова В.П., Репин В.В., Романов В.Г., Гаврилов Г.С. N2002109490/04: Заявл. 11.04.2002: Опубл. 10.10.2003.
6. Гайле А.А.
7. Патент 976630 Способ очистки изопрена / Чуркин В.Н., Горшков В.А., Елифантьева Н.В., Бутин В.И., №2986343/04; Заявл. 20.06.1980; опубл.27.07.2000
8. Балашов А.Л., Чубаров С.М., Авдошин Г.А. Способ выделения и очистки 1,3-диоксолана. Нижегородский технический университет-1997, № 1.
9. А.с. №686266, Горшков В.А., Кузнецов С.Г., Павлов С.Ю., Беляев В.А., Серова Н.В., Васильев Г.И., Шестовский Г.П., Малов Е.А. Способ разделения смесей близкокипящих углеводородов, БИ № 26, 1996.
10. А.с. № 726821, Горшков В.А., Кузнецов С.Г., Павлов С.Ю., Беляев В.А., Серова Н.В., Васильев Г.И., Шестовский Г.П., Малов Е.А. Способ разделения углеводородов С4-С5, БИ № 26, 1996.
11. Процесс извлечения пентафторэтана, № 6-19 3066 ( Япония), НПК 203/57, 1999.
12. Патент № 2157360, Трофимов В.Н., Пантук Б.И., Деревцов В.И. Способ очистки бензола от непредельных углеводородов, № 99118148, 2000.
13. Петлюк Ф.Б., Серафимов Л.А. Многокомпонентная ректификация. Теория и расчет: М., Химия, 1983. Серия «Процессы и аппараты химической и нефтехимической технологии». 304 с.
14. Петлюк Ф.Б., Платонов В.М., Аветьян В.С. Оптимальные схемы ректификации многокомпонентных смесей, ХП, №11,1966, с.65-68.
15. Деменков В.Н. Схемы фракционирования смесей в сложных колоннах. // Химия и технология топлив и масел. – 1997, №2, с.6–8.
16. Комиссаров Ю.А., Гордеев Л.С., Вент Д.П. Научные основы процессов ректификации: В 2 т. Т. 2. Учебное пособие для вузов / Под ред. Л.А. Серафимова. –М.: Химия, 2004.–416 с.
17. Тимошенко А.В., Паткина О.Д., Серафимов Л.А. Синтез оптимальных схем ректификации, состоящих из колонн с различным числом секций. // ТОХТ. – 2001, т.35, №5, с.485–491.
18. Тимошенко А.В., Серафимов Л.А. Стратегия синтеза множества схем необратимой ректификации зеотропных смесей. // Теор. основы хим. технологии – 2001, т.35, №6, с.603–609
19. Буев Д.Л. Разработка энергосберегающих схем ректификации, содержащих сложные колонны.- Автореферат диссертации на соискание ученой степени кандидата техн. наук. М.:, МИТХТ, 2002, 24с.
20. Тимошенко А.В., Анохина Е.А., Буев Д.Л. Применение графов траекторий ректификации для синтеза энергосберегающих технологий разделения // Теор. основы хим. технологии, 2004, т38, №2, с.1–5
21. Тимошенко А.В., Серафимов Л.А. Синтез оптимальных схем ректификации с использованием колонн с различным числом секций // Теор. основы хим. технологии, 2001, т.35, №5, сс.485-491