Смекни!
smekni.com

Электрохимическое поведение германия (стр. 1 из 6)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ТГПУ)

Биолого-химический факультет

Кафедра органической химии

ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ ГЕРМАНИЯ

(Выпускная (дипломная) работа)

Исполнитель: Студентка 102 группы

Капустина Ю.А

Руководитель: д.н.х., профессор кафедры

органической химии

Гладышев В. П.

Работу студентки Капустиной Ю.А.

к защите допустить

Заведующий кафедрой органической химии,

д.х.н., профессор

Полещук О.Х.

Декан биолого-химического факультета

к.х.н., доцент химии Минич А.С.

Томск – 2005

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГЕРМАНИЯ И ЕГО СОЕДИНЕНИЙ

ГЛАВА 2. ЭЛЕКТРОХИМИЧЕСКИЕ РЕАКЦИИ С УЧАСТИЕМ ГЕРМАНИЯ

2.1. Электродные потенциалы германия в водных растворах

2.2. Электроосаждение германия и его сплавов

2.3. Получение гидрида германия

2.4. Электрохимическое поведение соединений германия (II) и (IV)

2.5. Растворимость германия в ртути

ВЫВОДЫ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Германий является рассеянным элементом и распространен в природе только в виде соединений в различных минералах. Такие минералы встречаются редко и содержат мало Ge. Наиболее распространенные минералы германия – германит (Cu3(Ge,Fe)S4) - 6-10% и реньерит (Сu3(Fe,Ge)S4 ) – 5,5-7,7%. Содержание в земной коре 7,0 • 10-4 вес. % [1].

Германий содержится почти во всех силикатных породах, в нефти, угле, листьях, корнях некоторых растений, в золе морских водорослей, в некоторых минеральных водах, в различных микроорганизмах, в крови и некоторых органах человека.

В настоящее время германий еще не отнесен к жизненно важным элементам. Однако во многих растениях (в том числе и целебных: женьшень, алоэ, чеснок, бамбук) он сконцентрирован в значительных количествах. Анализ пищи животного и растительного происхождения показывает, что почти во всех ее видах германий содержится в количествах (более 3 мкг/г в томатном соке, бобах, рыбах), достаточных для постановки вопроса о его возможном значении, токсичности или инертности по отношению к организму человека и животных.

Раньше свойства германия как полупроводника не были известны и его получали в очень ограниченных количествах, главным образом для исследовательских целей. В настоящее время он получил широкое и разнообразное применение.

Металлический германий применяют для изготовления полупроводников, используемых в электронике и электротехнике, также применяют фотоэлементах и солнечных элементах. Основные преимущества германия перед другими полупроводниками заключаются, во-первых, в возможности сравнительно несложного получения его в виде полупроводникового материала с заданными свойствами (легкость химической и физической очистки от большинства примесей) и, во-вторых, в благоприятных электрофизических параметрах. Вследствие этого германий является одним из наиболее ценных материалов в современной полупроводниковой технике.

Имеются данные о стимуляции германийорганическими соединениями роста растений и экспериментальных животных, влиянии на заживлении ран и функциональную активность тромбоцитов.

Интенсивное развитие биоэлементорганической химии создало предпосылки для создания новых противоопухолевых препаратов на основе германийорганических соединений, которые выгодно отличаются по своим токсикологическим характеристикам. В США разрешено к применению первое германийорганическое соединение «спирогерман» для лечения рака молочной и предстательной железы, а также лимфосаркомы:

CH2-CH2 CH2-CH2

(C2H5)2Ge C

CH2-CH2 CH2 - N(CH2)3N(CH3)2

С каждым годом растет число публикаций, посвященных синтезу германийорганических соединений, обладающих различными противоопухолевыми свойствами. Интерес к биологической активности германийорганических соединений возник лишь в последнее десятилетие. Это обусловлено как их малой токсичностью (LD50>1500мг/кг), так и широким спектром биологического действия: препараты оказывают благоприятное действие при сердечно-сосудистых болезнях, хронических респираторных заболеваниях, старческой пневмонии, психоневрологических расстройствах, нарушении обмена веществ, некоторых формах аллергии, болезнях почек, печени, органов пищеварения, гипертонии и катаракте [2].

Для исследования и анализа соединений германия используют электрохимические методы, которые совершенствуются по настоящее время.

Целью работы является обзор и систематизация данных по электрохимическому поведению германия и его соединений.

В задачи исследования входило обобщение литературных данных по:

1. электроосаждению германия и его сплавов;

2. электрохимическому получению германа;

3. электрохимическому поведению Ge (II) и Ge (IV);

4. растворимости германия в ртути.

Практическая значимость работы. Результаты работы могут быть использованы при разработке метода синтеза германа и исследованию механизмов электрохимических реакций с участием германия.


1. Физико-химические свойства германия и его соединений

Свойства германия и его соединений рассмотрены в [1,3,4]

Германий – серебристо-белый металл. Полученный в виде тонкой пленки на подложке термическим разложением моногермана имеет темный буро-красный цвет. Кристаллическая решетка германия – кубическая гранецентрированная типа алмаза. Как и все вещества с такого рода кристаллическими решетками и гомеополярной связью, германий очень хрупок и при комнатной температуре легко превращается в порошок. Твердость металла по шкале Мосса примерно 6-6,5 (табл.1). Обычным методом вдавливания твердость германия определить не удается из-за хрупкости. Методом микротвердости для германия было найдено значение 385 кг/мм2. Такая высокая твердость в сочетании с хрупкостью делает невозможным механическую обработку германия. С повышением температуры твердость его падает, и выше 650 C чистый германий становиться пластичным [3].

Таблица 1

Физические свойства германия

Плотность при 25о г/см3 5,32 -5,36 г/см3
Твердость по шкале Мосса 6,25
Температура плавления 937,2 оС
Температура кипения 2852-2960 оС

При плавлении германий уменьшается в объеме примерно на 5,6 % (подобно галлию и висмуту).

Более наглядно химическая активность металлического Ge показана на схеме:


на воздухе или в кислороде → GeO2

c водой →GeO2

с галогенами →GeХ4 (Х = Cl-, Br-, I- )

с серой → GeS2 и GeS

c cеленом → GeSe и GeSe2

с H2S(газ) → GeS2 и GeS

с NH3(газ) → Ge3N4

Ge

c HCl(газ) →GeHCl3

с HCl(конц.) →GeCl4

с HNO3(конц.) или H2SO4(конц.) →GeO2 · nH2O

в царской водке → GeCl4

с фосфором → GeP

с мышьяком → GeAs и GeAs2

при расплавлении с перекисями, щелочами, нитратами или карбонатами щелочных металлов → растворимые германаты

При комнатной температуре германий не окисляется на воздухе. Выше 700оС начинает взаимодействовать с кислородом воздуха. Выше температуры плавления испаряется и сгорает с образованием диоксида. При нагреве порошкообразного германия в токе азота или аргона, содержащие небольшие количества кислорода (менее 1 %), наблюдается интенсивная возгонка при 800 – 850оC. Сублимат – оксид GeO с примесью азотистых соединений.

Вода совершенно не действует на германий. Он вполне устойчив по отношению к соляной кислоте и разбавленной серной кислоте. Концентрированная серная, а также плавиковая кислоты взаимодействуют с ним при нагревании. Азотная кислота окисляет его с поверхности. Растворяется в царской водке и 3%-ном щелочном растворе пероксида водорода. Под действием 10%-ного раствора едкого натра тускнеет, тогда как концентрированные растворы щелочей на него не действуют. Расплавленные щелочи, напротив, быстро растворяют германий.

Германий при нагревании легко

соединяется с галогенами и серой. В атмосфере аммиака при 600 – 700о образуется нитрид германия. Водород и азот на него не действуют. С углеродом не взаимодействует, поэтому графит является наиболее часто применяемым материалом тиглей для плавки германия. Сплавляется почти со всеми металлами и с большинством из них дает довольно легкоплавкие эвтектики. Германий образует окиды, сульфиды, нитриды, гидриды, многочисленные интерметаллиды и металлоорганические соединения.

В своих соединениях германий бывает двух- и четырехвалентным. Соединения германия (II) неустойчивы и легко окисляются до соединений германия(IV).

Оксид германия (II) выделяется в виде черных кристаллов путем нагревания Ge в токе CO2 при 800-900оС:

Ge + СО2 → GeO + СО

При 500оС оксид германия разлагается на оксид германия (IV) и германий. При комнатной температуре GeO вполне устойчив как в сухом, так и во влажном воздухе. При нагревании в кварцевом тигле до температуры 800оС образуется желтая глазурь. С Cl2 и Br2 GeО взаимодействует при 250оС с образованием GeCl4 или GeBr4 и GeO2. С соляной кислотой – при 175оС с образованием GeHCl2 и Н2О. Окисляется дымящей НNO3, KMnO4 и хлорной водой, образуя, по-видимому, растворы диоксида германия. В воде практически не растворяется, но медленно растворяется в НCl и H2SO4, причем уже при комнатной температуре происходит частичное окисление кислородом воздуха двухвалентного германия до четырехвалентного [4].