Испытания и работы в данном направлении будут продолжены, так как предлагаемая технология изготовления волокнового ОНЭ делает возможным значительное сокращение расхода дорогостоящих никеля и кадмия, а результаты ранее проведенных испытаний макетов, изготовленных в габаритах авиационного аккумулятора НКБН-25, позволяют надеяться на больший срок службы этих аккумуляторов (до 1500 циклов). Предполагается продолжить работы в направлении создания НКА с волокновыми ОНЭ для вагонов с кондиционированием и без кондиционирования воздуха, так как применение волокновых основ решает целый ряд проблем, связанных с освоением этого рынка изделий.
Таблица 6
Массогабаритные характеристики аккумуляторов с
волокновыми оксидноникелевыми электродами и
аккумуляторов КН150Р, КМ100Р, KPL70P
Параметры | Тип аккумулятора | |||
КН150Р | КМ 1 OOP | KPL70P | НКА с волокновыми ОНЭ | |
Масса, (кг) | 11.6 | 4 | 3.9 | 4.35 |
Объем, (дм3) | 6.7 | 1.875 | 1.875 | 1.875 |
Емкость, (А-ч) | 320 | 100 | 70 | 190 |
Удельная массовая емкость, (А-ч/кг) | 28 | 25 | 18 | 44 |
Удельная объемная емкость, (А-ч/дм3) | 48 | 53 | 37 | 101 |
В четвертой главе проработаны экологические аспекты производства НКА с волокновыми ОНЭ. Предлагаемая в работе схема позволяет замкнуть технологический процесс путем возврата никельсодержащих сточных вод в производство, что делает изготовление НКА с волокновыми ОНЭ экологически безопасным. Не представляется затруднительной и проблема утилизации отработанных аккумуляторов, повышенный ресурс которых гарантирует уменьшение попадания вредных соединений кадмия и никеля в окружающую среду.
Проведена оптимизация раствора химического никелирования в части, относящейся к его составу. Экспериментально было доказано, что введение сернокислого аммония в качестве буферирующей добавки в состав раствора химического никелирования нежелательно. Избыточное содержание этого компонента негативно сказывается на качестве металлопокрытия. Необходимое для протекания реакции восстановления ионов никеля количество сернокислого аммония образуется вследствие взаимодействия аммиака и сернокислого никеля.
Проведена статистическая обработка данных по специально разработанной методике, которая позволила определить оптимальную толщину никелевого покрытия, нанесенного электрохимически, в пределах 5.85-7.54 мкм.
На основании полученных экспериментальных данных и теоретических предположений, изложенных в форме научной гипотезы, развиты представления о внеструктурном механизме активации волокнового ОНЭ кобальтом (II) и внутриструктурном - цинком (И). Эти предположения подтверждены экспериментально, что позволило сбалансировать состав активной массы волокновых электродов, и обеспечить стабильно высокие удельные характеристики НКА с волокновыми ОНЭ на протяжении 1100 циклов. Испытания продолжаются.
Показано, что емкость и удельная энергия НКА с волокновыми ОНЭ (до 56 Вт-ч/кг при нормальных климатических условиях эксплуатации) в полтора-два раза превосходят емкость и удельную энергию выпускаемых в настоящее время ЗАО «НИИХИТ» и ОАО «Завод АИТ» аналогов в тех же габаритах и того же назначения (НКБН-25, KPL70P, КМ100Р, КН150Р).
Изготовленное оборудование (линия никелирования волокновых основ, установка приготовления пасты активного материала, устройство для заполнения волокновых основ) по результатам опытно-промышленной проверки позволяет выйти на крупносерийный уровень производства. Созданное оборудование позволяет изготавливать электроды в широком массогабаритном диапазоне. Это делает предлагаемую технологию более мобильной и универсальной.
Дано экономическое обоснование производства НКА с волокновыми ОНЭ. Более высокие удельные характеристики НКА с волокновыми ОНЭ по сравнению с НКА, изготовленными по традиционной технологии, позволяют сократить вдвое расход дорогостоящего никеля (в виде Ni(OH) 2), кадмия и других материалов, необходимых для изготовления НКА. По стоимости изделий разработанная технология находится на одном уровне с «ламельной».
Разработана схема возврата сточных вод после проведения операций химического (стадия сорбции никеля) и электрохимического никелирования. Достоинством предлагаемого процесса переработки отработанного раствора является возможность использовать для извлечения катионов никеля промывную воду после гальванического никелирования основ и по расходу никеля замкнуть технологический процесс, что не осуществимо в случае применения традиционных методов химической металлизации. Проведенные предварительные исследования по утилизации ОНЭ позволили предложить технологию получения никелевой фольги.
Основное содержание диссертации изложено в следующих работах:
Влияние способа введения гидроксида кобальта на электрохимическую активность оксидно-никелевого электрода волокновой структуры / Волынский В.В., Степанов А.Б., Радкевич Ю.Б. Попова С. С, Шараевский А.П. // Современные электрохимические технологии СЭХТ: Тез. докл. научн. -техн. конф. - С.144.
Потенциометрия электродов из никелированных войлоков / Мосидзе Н. С, Волынский В.В., Распопова Г.А., Попова С. С, Радкевич Ю.Б. // Современные электрохимические технологии СЭХТ-96: Тез. докл. научн. -техн. конф., Энгельс. - С.112-114.
Разработка высокомощного никель-кадмиевого аккумулятора с оксидно-никелевым электродом волокновой структуры / Волынский В.В., Степанов А.Б., Радкевич Ю.Б., Попова С.С. // 100 лет Российскому автомобилю. Промышленность и высшая школа. Тез. докл. Междунар. Науч. -техн. конф., Москва. -С.114.
Волынский В.В., Попова С.С. Зависимость электрохимических характеристик никель-кадмиевых аккумуляторов с окисноникелевыми волокнистыми электродами от температуры и плотностей тока разряда // Современные проблемы теоретической, и экспериментальной химии. Министерство общего и профессионалъного образования РФ. Тез. докл. Всероссийской конференции молодых ученых. С.297
Волынский 6. В, Попова С.С. Технологические особенности заполнения электродных основ волокновой структуры для никель-кадмиевых аккумуляторов пастой активного материала // XVI Менделеевский съезд по общей и прикладной химии. Санкт-Петербург, 1998. - Т.2. - С.553-554.
Кинетические и технологические закономерности процессов, протекающих при утилизации отработанных оксидноникелевых электродов/ Попова С. С, Целуй-кина Г.В., Мизенцова М.А., Волынский В.В. // XVI Менделеевский съезд по общей и прикладной химии. Санкт-Петербург, 1998. - Т.2 - С.143-144.
Волынский В.В., Попова С.С. Металловоилочные гидроксидноникелевые электрод с повышенными удельными характеристиками.