Таблица 1
Зависимость удельного сопротивления основ волокновой
структуры от состава раствора химического никелирования
Вариант изготовления заготовки | Ток I, (А) | рср, (Ом-см) до хранения | рор, (Ом-см) после хранения |
В присутствии (NH,) 2S04 | 0.1 | 0.301 | 2.146 |
Без (NH4}>S04 | 0.1 | 0.137 | 0.837 |
Приведены средние значения из девяти измерений для каждого варианта.
Поэтому в дальнейшем волокновые ОНЭ были получены на полимерных основах, обработанных в растворах химического никелирования без добавления в них.
Изучение характеристик волокновых ОНЭ позволило установить, что эффективность заполнения активным материалом порового пространства волокновой матрицы зависит от исходной массы никелевого покрытия (рис.1), которая является произвольной толщины электрохимически осажденного слоя никеля. Согласно литературным данным, оптимальная толщина никелевого покрытия должна составлять 5 мкм. Однако экспериментальное подтверждение этому в литературе отсутствует.
Третья глава посвящена разработке волокновых оксидноникелевых электродов и аккумуляторов на их основе.
Согласно действующей технологии, в электроды прессованной и ламельной конструкций добавляют кобальт в виде порошка в смеси с гидроксидом никеля на стадии 10 приготовления активной массы; электроды металлокерамической конструкции пропитывают в растворе солей кобальта (II). Первый способ принципиально не выгоден ввиду ограниченного срока годности гидроксида кобальта: окисляясь кислородом воздуха, он со временем теряет свои активирующие свойства. Второй способ для изготовления пастированных электродов технологически не удобен.
С учетом специфики волокновой подложки в настоящей работе активный материал наносили на волокновую матрицу в виде пасты из полимерного водорастворимого связующего (ПВС), раствора соли кобальта и наполнителя (мелкодисперсного порошка). Это потребовало введения в технологический регламент параметров по вязкости ПВС и дисперсности наполнителя. Характерная особенность пасты состояла в том, что активирующая добавка вводилась в нее из водного раствора соли кобальта. Теоретическая емкость электродов составила 0.44 А-ч/см3 (98% от расчетной). Это свидетельствовало о высокой степени заполнения электродной основы пастой и явилось подтверждением ее оптимального реологического состава. Для подтверждения обнаруженного эффекта были проведены испытания макетов аккумуляторов, собранных в габаритах НКБН-25 из восьми волокновых ОНЭ и восьми кадмиевых электродов, изготовленных электрофоретическим способом на перфорированной никелевой ленте. В качестве сепаратора на положительном электроде использовали капрон, на отрицательном - два слоя фильтровального полотна Петрянова (ФПП). Уже на втором цикле формировки отдаваемая аккумуляторами емкость достигла 32.93 А-ч, коэффициент использования составил 77%, а удельная энергия 41.3. Вт-ч/кг. К десятому циклу макеты были полностью расформированы, обладая следующими характеристиками; емкость 38.4 А-ч, коэффициент использования активной массы 89%, удельная энергия 48 Вт-ч/кг.
На следующем этапе было проведено сравнительное исследование способа введения добавки кобальта в активную массу. Как показали испытания (табл.2, рис.4) при введении добавки кобальта (II) в ОНЭ из раствора его соли C0SO4 аккумуляторы обладают значительными преимуществами: при токе разряда 12.5. А=0.5С„ удельная энергия Wi макетов первого варианта на 14% больше удельной энергии W макетов второго и третьего вариантов, когда кобальт вводился в активную массу ОНЭ в виде металлического порошка или гидроксида кобальта; при разрядах большими токами превышение W! над W2 и W3 составило 23% и 31% соответственно.
Таблица 2
Удельная энергия (W) и емкость (С) аккумуляторов с
основами волокновой структуры в зависимости от тока
разряда и способа введения кобальта
Активатор | Ток разряда | |||||||||
8 А | 12.5А | 25 А | 50 А | 125 А | ||||||
С, (А-ч) | W, (Вт-ч/кг) | С, (А-ч) | W, (Вт-ч/кг) | с,(А-ч) | W, (Вт-ч/кг) | С, (А-ч) | W, (Вт-ч/кг) | С, (А-ч) | W, (Вт-ч/кг) | |
CoSO„ | 37.58 | 47.9 | 32.02 | 40.86 | 31.54 | 40.2 | 27.54 | 35.6 | 21.24 | 27.34 |
Сомет | 28.26 | 35.7 | 27.7 | 35 | 25.5 | 32.21 | 21.7 | 27.4 | - | - |
Со(ОН) 2 | 27.5 | 35.47 | 26.62 | 34.37 | 23.95 | 30.9 | 18.97 | 24.5 | - | - |
По своим удельным характеристикам такие аккумуляторы превосходят традиционные НКА и только при больших токах металлокерамической конструкции Испытания по режиму МЭК макетов НКА с волокновыми ОНЭ, изготовленными согласно вариантам таблицы 2, показали, что после 1100 зарядно-разрядных циклов не произошло сколько-нибудь существенного снижения емкости. Более резкое смещение напряжения в отрицательную сторону у аккумуляторов третьего варианта при жестких режимах (рис.3) можно объяснить наличием лучше сформированной фазы yNiOH, обнаруженной рентгенографически (табл.3), которая приводит к возникновению фазовой поляризации. Причиной фазовой поляризации может быть различие в кристаллической структуре продуктов анодного окисления (y-NiOOH - ромбоэдрическая структура) и катодного восстановления (Ni(OH) 2 - гексагональная структура). При введении добавки кобальта по второму варианту дополнительной фазовой поляризации не возникает. Повышение электрохимической активности намазного ОНЭ волокновой структуры при введении в него добавки кобальта (II) из раствора соли C0SO4 связано с возможностью полного и равномерного активирования поверхности оксидов никеля именно к моменту начала образования фазы NiOH. Плохо растворимые в щелочи металлический Со и Со (ОН) 2 не могут обеспечить столь равномерного первичного распределения.
По степени положительного влияния на ресурс долговечности аккумуляторов способы активирования гидроксида никеля (II) кобальтом можно расположить в ряд: раствор C0SO4 (более 1100 циклов) Со мет (600 циклов) => Со(ОН) 2 (300 циклов). Это согласуется с представлениями о замедлении процесса образования фаз p-NiOOH и у-NiOOH в ОНЭ, активированных кобальтом.
Проведенные исследования позволили упростить технологию приготовления активных масс, снять ограничения по сроку сохранности кобальтсодержащей добавки и сократить продолжительность формировки аккумуляторов до двух циклов. Повышение мощности и емкости НКА с волокновыми ОНЭ позволяет значительно расширить сферу их применения. Уже сейчас такие батареи могут быть использованы для запуска авиационных, карбюраторных и тепловозных дизельных двигателей, в электротранспорте промышленных предприятий, в радиопередатчиках и сигнальных установках.
Результаты ресурсных испытаний макетов НКА с волокновыми ОНЭ показали, что введение дополнительно добавки цинка (II) одним из следующих способов:
активация порошкообразными металлическим кобальтом (Co/Ni - 3.5%) и оксидом цинка ZnO (Zn/Ni - 2%);
активация сульфатами кобальта (Co/Ni - 3.5%) и цинка (Zn/Ni - 2%), введенными через раствор;
Совокупность полученных экспериментальных данных позволяет предположить следующий механизм влияния Со и Zn на характеристики ОНЭ волокновой конструкции. При введении в состав активного материала вышеназванных соединений в ходе циклирования НКА происходит образование зародышей гидроксидов Со(ОН) 2 и Zn(OH) 2, осаждающихся на поверхностных гранях кристаллов Ni(OH) 2. Скорость их образования тем выше, чем лучше растворимость изначально выбранного соединения. Далее действует механизм, описанный.
Образующиеся гидроксокомплексы двухвалентного кобальта окисляются до СоН02. Общеизвестно, что кобальт препятствует возникновению хорошо сформированной фазы y-NiOOH, межслоевое пространство которой содержит катионы щелочи и воду. По причине того, что СоНО в условиях работы ОНЭ не вступает в химическое взаимодействие с калием, кобальт, располагаясь на определенных гранях кристаллов гидроксида никеля, препятствует вхождению в него катионов щелочи.
Малое количество и плохая сформированность y-NiOOH в присутствии кобальта приводят к понижению степени окисленности никеля как в разряженном, так и в заряженном состоянии. Следствием этого является углубление процесса разряда электродов, который сопровождается параллельным ростом величины удельной поверхности активной Массы и ее коэффициента использования.
Помимо этого ионы кобальта влияют и на макроструктуру активного материала, препятствуя агрегации (укрупнению) кристаллитов и «старению» ОНЭ. Следовательно, ионы кобальта играют роль поверхностного активатора ОНЭ. С другой стороны малорастворимый гидроксид цинка, осадившийся на поверхности кристаллов Ni(OH) 2, в начальный момент, играет роль барьера для диффузии протонов как из кристаллической решетки в процессе заряда, так и внутрь структуры гидроксида никеля при разряде (Рис.6 а). Этим и обусловлены низкие характеристики аккумуляторов на первых циклах наработки. Однако при дальнейшем циклировании цинк (II), по-видимому, постепенно переходит в щелочной электролит и вместе с гидратной оболочкой внедряется в кристаллическую решётку гидроксида никеля при заряде ОНЭ. Располагаясь в основных слоях структуры и межслоевом пространстве (Рис.6 б), он способствует образованию водородных связей, обнаруженных экспериментально методом ИК - спектроскопии (рис.7). Это облегчает диффузию протонов через границу раздела фаз оксид/раствор. С другой стороны, снижение электростатических сил отталкивания между основными слоями стабилизирует структуру активного материала и препятствует процессам «старения» и перекристаллизации в ходе циклирования. Наличие же «структурной» воды в межслоевом пространстве кислородных соединений никеля обнаруженной дериватографическим методом (рис.8), увеличивает скорость диффузии протонов при разряде, что улучшает стартерные ха рактеристики НКА (рис.5) с водокновыми ОНЭ. Таким образом, цинк (II), согласно терминологии Ежова Б.Б., можно считать эффективным внутриструктурным активатором. Разработанные аккумуляторы имеют высокие удельные параметры. Их емкость до 203 А-ч и удельная энергия до 56 Вт-ч/кг при нормальных климатических условиях эксплуатации вдвое превосходят емкость и удельную энергию выпускаемых в настоящее время ОАО «Завод АИТ» аналогов в тех же габаритах (KPL70P и КМ 100Р).