Смекни!
smekni.com

Электролиты и их свойства (стр. 1 из 8)

Введение

Водные растворы солей, кислот и оснований обладают некой особенностью — они проводят электрический ток. При этом безводные твердые соли и основания, а также безводные кислоты тока не проводят; почти не проводит тока и чистая вода. Очевидно, что при растворении в воде подобные вещества подвергаются каким-то глубоким изменениям, которые и обусловливают электропроводность получаемых растворов.

Например, при прохождении тока через раствор серной кислоты, происходит разложение воды на составные части – водород и кислород, выделяющиеся на пластинах, соединенных соответственно с отрицательным и положительным полюсами батареи. Такого рода растворы, разлагающиеся химически при прохождении через них тока, будем называть электролитами, а сам процесс разложения вещества электрическим током – электролизом.


1. Определение электролитов

Можно сказать, что электролиты – это вещества, в которых в заметной концентрации присутствуют ионы, обусловливающие прохождение электрического тока (ионную проводимость). Электролиты также имеют название проводников второго рода.

В узком смысле слова электролиты – вещества, молекулы которых в растворе, вследствие электролитической диссоциации, распадаются на ионы. Среди электролитов различают твердые, растворы электролитов и ионные расплавы. Растворы электролитов часто также называют электролиты. В зависимости от вида растворителя электролиты делятся на водные и электролиты неводные. К особому классу относятся высокомолекулярные электролиты – полиэлектролиты.

В соответствии с природой ионов, образующихся при электролитической диссоциации водных растворов, выделяют солевые электролиты (в них отсутствуют ионы Н+ и ОН-), кислоты (преобладают ионы Н+) и основания (преобладают ионы ОН-). Если при диссоциации молекул электролитов число катионов совпадает с числом анионов, то такие электролиты называют симметричными (1,1 -валентными, например, КСl, 2,2-валентными, например, CaSO4, и т.д.). В противном случае электролиты называют несимметричными (1,2-валентныеэлектролиты, напр. H2SO4, 3,1-валентные, например, А1(ОН)3, и т.д.). В зависимости от способности к электролитической диссоциации электролиты условно разделяют на сильные и слабые. Слабые электролиты характеризуются, прежде всего, константой и степенью диссоциации, а сильные активностью ионов.

1.1Слабые электролиты. Константа и степень диссоциации

Молекулы слабых электролитов лишь частично диссоциированы на ионы, которые находятся в динамическом равновесии с недиссоциирующими молекулами. К слабым электролитам относятся многие органические кислоты и основания в водных и неводных растворителях. Степень диссоциации зависит от природы растворителя, концентрации раствора, температуры и других факторов( <1). Один и тот же электролит при одинаковой концентрации, но в различных растворителях образует растворы с различной степенью диссоциации.

В растворах слабых электролитов устанавливается равновесие между недиссоциированными молекулами и продуктами их диссоциации — ионами. Например, в водном растворе уксусной кислоты устанавливается равновесие


СНзСООН Н+ + СН3СОО-

Константа которого (константа диссоциации) связана с концентрациями соответствующих частиц соотношением:

К = [н+] [сн3соо-]

[сн3соо]

Степенью диссоциации а электролита называется доля его молекул, подвергшихся диссоциации, т. е. отношение числа молекул, распавшихся в данном растворе на ионы, к общему числу молекул электролита в растворе.

В случае электролита MX, диссоциирующего на ионы М+ и Х-, константа и степень диссоциации связаны соотношением (закон разбавления Оствальда)

К = а2С/1 - а

где С — молярная концентрация электролита, моль/л.

Если степень диссоциации значительно меньше единицы, то при приближенных вычислениях можно принять, что 1 - а

1. Тогда выражение закона разбавления упрощается:

К = а2С

Отсюда

Последнее соотношение показывает, что при разбавлении раствора (т. е. при уменьшении концентрации электролита С) степень диссоциации электролита возрастает.

Если в растворе электролита MX степень его диссоциации равна а, то концентрации ионов М+ и Х- в растворе одинаковы и составляют:

+]=[Х-]=аС

Подставив сюда значение а из предыдущего соотношения, находим:

+]=[Х-]=С

=

Для расчетов, связанных с диссоциацией кислот, часто удобно пользоваться не константой К, а так называемым показателем константы диссоциации рК, который определяется соотношением

рК = - lgК

Очевидно, что с возрастанием К, т. е. с увеличением силы кислоты, значение рК уменьшается; следовательно, чем больше рК, тем слабее кислота.

При введении в раствор слабого электролита одноименных ионов (т. е. ионов, одинаковых с одним из ионов, образующихся при диссоциации электролита) равновесие диссоциации нарушается и смещается в направлении образования недиссоциированных молекул, так что степень диссоциации электролита уменьшается. Так, прибавление к раствору уксусной кислоты ее соли (например, ацетата натрия) приведет к повышению концентрации ионов СН3СОО - и, в соответствии с принципом Ле Шателье, равновесие диссоциациисместится влево.

СНзСООН Н+ + СН3СОО-

В растворах многоосновных кислот, а также оснований, содержащих несколько гидроксильных групп, устанавливаются ступенчатые равновесия, отвечающие последовательным стадиям диссоциации. Так, диссоциация ортофосфорной кислоты протекает в три ступени,каждой из которых отвечает определенное значение ступенчатой константы диссоциации. Поскольку К1 >> К2 >>К3, то в наибольшей степени протекает диссоциация по первой ступени, а при переходе к каждой последующей стадии степень диссоциации, как правило, резко уменьшается.

Н3РО4 ↔Н+ + Н2РО4- 1=7,5 . 10-3)

Н2РО4- ↔ Н+ + НРО42-2=6,3 . 10-8)

НРО42- ↔ Н+ + РО43- 3=1,3 . 10-12)

Диссоциация электролита приводит к тому, что общее число частиц растворенного вещества (молекул и ионов) в растворе возрастает по сравнению с раствором неэлектролита той же молярной концентрации. Поэтому свойства, зависящие от общего числа находящихся в растворе частиц растворенного вещества (коллигативные свойства), — такие, как осмотическое давление, понижение давления пара, повышение температуры кипения, понижение температуры замерзания — проявляются в растворах электролитов в большей степени, чем в равных по концентрации растворах неэлектролитов. Если в результате диссоциации общее число частиц в растворе электролита возросло в iраз по сравнению с числом его молекул, то это должно быть учтено при расчете осмотического давления и других коллигативных свойств. Формула для вычисления понижения давления ∆р пара растворителя приобретает в этом случае следующий вид:

∆р= р0 in2/п1+ in2

Здесь

р0— давление насыщенного пара над чистым растворителем;

п2— число молей растворенного вещества;

п1— число молей растворителя;

i— изотонический коэффициент или коэффициент Вант-Гоффа.

Аналогично понижение температуры кристаллизации ∆tкрист и повышение температуры кипения ∆tкип раствора электролита находят по формулам

∆tкрист =iKm

∆tкип=iEm

где m— моляльная концентрация электролита, а К и Е — соответственно, криоскопическая постоянная и эбуллиоскопическая постоянная растворителя.

Наконец, для вычисления осмотического давления (Р, кПа) раствора электролита используют формулу

Р =iCRT

где С — молярная концентрация электролита, моль/л; R— газовая постоянная (8,31 Дж . моль-1. К-1); Т — абсолютная температура, К.

Нетрудно видеть, что изотонический коэффициент iможет быть вычислен как отношение ∆р , ∆tкрист, ∆tкип, Р, найденных на опыте, к тем же величинам, вычисленным без учета диссоциации электролита (∆рвыч, ∆tкрист.выч, ∆tкип.выч, Рвыч):

i=∆р/∆рвыч=∆tкрист/∆tкрист.выч=∆tкип/∆tкип.выч=Р/ Рвыч

Изотонический коэффициент iсвязан со степенью диссоциации электролита а соотношением

i=1+a (k - 1) или

где k— число ионов, на которые распадается при диссоциации молекула электролита (для КСlk = 2, для ВаСl2 и Na2SO4k=3 и т. д.).

Таким образом, найдя по опытным величинам ∆р, ∆tкрист и т. п. значение i, можно вычислить степень диссоциации электролита в данном растворе. При этом следует иметь в виду, что в случае сильных электролитов найденное таким способом значение а выражает лишь «кажущуюся» степень диссоциации, поскольку в растворах сильные электролиты диссоциированы полностью. Наблюдаемое отличие кажущейся степени диссоциации от единицы связано с межионными взаимодействиями в растворе.