Или теоретически можно представить себе движение фигуративной точки в поле градиента температуры, при котором в каждой точке траектории градиент лежит на касательной прямой к этой траектории. Такое движение описывается системой уравнений вида [6]:
Дифференциал температуры в общем виде представляется как скалярное произведение градиента температуры на вектор изменения состава одной из фаз. Для жидкой фазы:
Согласно уравнению (8), равенство нулю дифференциала равновесной температуры
1) Вектор-градиент равновесной температуры равен нулю
2) Векторы
Уравнение Ван-дер-Ваальса–Сторонкина [7] – это математическая модель, описывающая равновесное распределение всех компонентов между фазами и устанавливающая соответствие между параметрами фазового перехода. Также это уравнение фазового обмена, связывающее фазовые эффекты (объемный, энтропийный, эффект химических потенциалов), которые отражают локальное поведение системы при переходе бесконечно малого количества одной фазы в конечное количество другой фазы.
В общем виде для двухфазной
Уравнение связи между векторным полем нод и скалярным полем равновесных температур [3, 6, 8] позволяет легко анализировать фазовое равновесие для многокомпонентных смесей. Данное уравнение записывается как система уравнений в частных производных и при
Для случая
где
В общем виде уравнения (10) и (11) можно представить так [3, 6, 8]:
С помощью оператора
Как видно, в первом случае векторы ноды и градиента температур направлены в разные стороны и образуют между собой тупой угол; во втором – векторы ноды и градиента давлений направлены в одну сторону и образуют между собой острый угол, что объясняет знак "–" в уравнении (10). После действия оператора G вектор ноды изменяет свое направление и модуль и становится вектором
(а) (б)
Рис.3. Взаимное расположение изотермоизобарического многообразия, векторов ноды жидкость–пар и градиентов температуры (а) и давления (б) в трехкомпонентных системах.
Из сравнения уравнений (10) и (11) следует частный вывод. Для некоторого вектора состава жидкой фазы отнимем одно уравнение от другого. При определенных
или:
Поскольку
Следовательно, эти два вектора всегда лежат на одной прямой, ортогональной многообразию уровня, и имеют противоположное направление.
Подробное исследование уравнений (10) и (11) было проведено в [8]. Отмечено, что полученные результаты можно использовать для выявления различных корреляций и тонких закономерностей фазового равновесия жидкость–пар в многокомпонентных системах, в частности:
- для определения взаимосвязи топографического представления равновесной температуры кипения смеси и хода
- для определения экстремумов температуры (давления) по направлению;
- для корреляции хода изотермоизобар и коэффициентов распределения компонентов;
- для получения некоторых общих выводов относительно различных термодинамических свойств путём исследования полученных уравнений в избыточных функциях.
Подробное исследование свойств скалярных полей равновесных температур двухфазных трехкомпонентных систем было проведено в [9-11].