Основные методы прогнозирования энтальпий образования органических соединений относятся к
, то есть характеризуют свойство вещества, находящегося в состоянии идеального газа при давлении 1 атм. и температуре 298,15 К, которую часто называют стандартной. Среди методов массовых расчетов особого внимания заслуживают методы молекулярной механики и аддитивные методы (лат. additio - прибавление). Большинство полуэмпирических методов не обеспечивает требуемого качества прогноза. Неэмпирические методы не дают прямого выхода на энтальпии образования веществ и к тому же до сих пор являются малодоступными для расчета свойств органических веществ со сложным строением молекул.В группе методов молекулярной механики нами накоплен значительный опыт по использованию метода ММХ (на базе силового поля Эллинджера). Метод хорошо зарекомендовал себя в приложении к
алканов. Однако уже для ароматических соединений его целесообразно использовать не для расчета энтальпий образования, а для оценки эффектов взаимодействия заместителей в молекуле, т.е. для разностей энтальпий образования изомеров. Для большинства галогенорганических, кислород-, азот- и серосодержащих соединений метод дает смещенные оценки . Тем не менее, этот метод следует применять во всех случаях для экспрессной оценки свойства. Как и любой другой метод, он требует подкрепления результатов сведениями, полученными другим методом прогнозирования. Метод молекулярной механики имеет прекрасный интерфейс и исключительно результативен как источник информации о строении молекул и их геометрических параметрах.При отсутствии справочных данных для прогнозирования
в настоящее время широко используются различные аддитивные методы. С момента создания основных аддитивных методов прогнозирования свойств органических веществ, находящихся в состоянии идеального газа, прошел значительный период времени, однако они сохраняют свою значимость, несмотря на становящиеся все более доступными методы молекулярного моделирования. Эти методы эффективны в тех случаях, когда свойство изменяется линейно при изменении количества однотипных фрагментов в молекуле. Строго аддитивной является, например, молекулярная масса вещества. Для энтальпий образования органических соединений аддитивный подход является во многих случаях лишь некоторым приближением в расчете. Дело в том, что даже в гомологической группе изменяется нелинейно с изменением числа углеродных атомов в молекуле (рис. 1.1).Рис. 1.1. Зависимость энтальпии образования н-алканов и алкил бензолов от числа атомов углерода в их молекулах
Таким образом, гомологическая разность не является величиной постоянной, особенно для первых членов гомологических групп. Точно так же при увеличении количества заместителей одного вида в молекулах органических веществ очень часто приходится говорить об отклонении от аддитивности в
. Однако при введении поправок на неаддитивность методы данной группы работают вполне удовлетворительно, если степень и глубина их детализации достаточны и отвечают точности современного эксперимента.В зависимости от принятой идеологии в качестве носителя структурной и количественной информации в аддитивных методах могут выступать составляющие молекулу атомы, группы атомов или связи. Большинство методов прогнозирования построено таким образом, что по мере расширения базы данных по энтальпиям образования относительно легко могут быть уточнены значения парциальных вкладов или введены новые поправки.
Общий подход к прогнозированию энтальпий образования веществ предполагает вычисление
с последующим, при необходимости, переходом к идеально-газовым энтальпиям образования при других температурах или к , т.е. к свойству вещества в реальном состоянии.Следует признать, что из всего многообразия аддитивных схем для прогнозирования энтальпий образования органических веществ метод Бенсона в течение продолжительного периода применяется наиболее широко. Объясняется это, вероятно, тем, что этим методом охвачен наиболее широкий круг соединений. Для оперативной оценки
абсолютного большинства соединений без привлечения каких-либо технических средств метод, пожалуй, не имеет себе равных. Совершенно очевидно, что ценой его универсальности является точность прогноза. Поэтому при использовании метода необходимо знать о неизбежных его ограничениях. На основные из них, являющиеся результатом нашей широкой апробации метода, мы постараемся обратить внимание потенциальных пользователей.Метод Бенсона принято называть групповым, хотя в качестве структурной единицы в нем избран атом с его первым окружением. Метод разработан автором для расчета следующих идеально-газовых свойств веществ: теплоемкости
при температурах, кратных 100 градусам, энтальпии образования и энтропии .Алкилбензолы и их функциональные производные
Объем экспериментальных сведений для
ароматических углеводородов существенно меньше, чем для алканов, и строение молекул соединений, для которых имеются надежные калориметрические данные, не отличается большим разнообразием. Это не позволяет в настоящее время выработать подходы к прогнозированию их энтальпий образования, опираясь только на калориметрические данные. Для этой цели нами использована вся совокупность фактического материала и возможности неэмпирических методов расчета энергии и геометрии молекул, а также метода молекулярной механики с силовым полем Эллинджера.В результате можно с уверенностью говорить о том, что при использовании любого аддитивного метода для
алкилароматических углеводородов необходимо вводить поправки, природа которых в основном имеет стерическое происхождение. Величина этих поправок никоим образом не является постоянной, как это принято, например, в методе Бенсона, а зависит от эффективных размеров взаимодействующих групп, от количества рядом расположенных заместителей и от их взаимной ориентации.Последовательное применение метода Татевского по связям к накопленным к настоящему времени экспериментальным данным позволило определить значения парциальных вкладов, которые приведены в табл. 1.11. Все парциальные вклады получены на весьма представительных выборках и могут считаться достаточно надежными, чтобы быть рекомендованными к применению.
В отношении поправок (табл. 1.11) необходимо отметить, что большинство из них определено по одному-двум источникам экспериментальной информации. Однако все приведенные значения прошли дополнительное тестирование неэмпирическими методами расчета. Выполненный нами анализ полученных при этом результатов показал, что использование аддитивных подходов на этапе введения поправок для
алкилароматических соединений, имеющих три и большее количество алкильных заместителей в молекуле, может рассматриваться лишь в качестве первого приближения. Недостаточно конструктивен, на наш взгляд, также подход, предложенный в свое время Коксом и Пилчером [2] для полизамещенных бензолов и состоящий в дополнении орто-эффектов поправками, учитывающими тройное взаимодействие заместителей в молекуле.Таблица 1.11 Значения парциальных вкладов для прогнозирования
*Условноеобозначение | ΔfH0g, 298, кДж/моль | Условное обозначение | ΔfH0g, 298, кДж/моль | ||||||
1 уровень | 2 уровень | 3 уровень | N | 1 уро-вень | 2 уровень | 3 уровень | N | ||
Парциальные вклады для ароматических соединений | |||||||||
(Cb-H)1 | 13,877 | 65 | Cb-OH | -164,390 | 62 | ||||
(Cb-C1)1 | -19,121 | 18 | Cb-NH2 | 18,42 | 16 | ||||
(Cb-C2)1 | 13,976 | 10 | Cb-F | -181,85 | 34 | ||||
(Cb-C3)1 | 24,824 | 11 | Cb-I | 93,424 | 6 | ||||
(Cb-C4)1 | 34,603 | 13 | Nb | 70,45 | 12 | ||||
(Cb-Cb)1 | 41,069 | 13 | |||||||
Поправки на орто-взаимодействие заместителей | |||||||||
C1-C1 (транс-“Н-Н”) | 1,461 | 15 | OH(транс-)-C2 | 2,4 | 1 | ||||
C1-C1 (шахм.-“Н-Н”) | 5,120 | 6 | OH(транс-)-C3 | 2,029 | 6 | ||||
C1-C2 | 3,600 | 1 | OH(цис-)-C3 | 8,661 | 1 | ||||
C1-C3 | 5,900 | 1 | OH(транс-)-C4 | 11,155 | 15 | ||||
C1-C4 | 23,600 | 1 | OH(цис-)-C4 | 18,007 | 3 | ||||
C2-C2 | 4,222 | 1 | NH2-C4 | 19,05 | 2 | ||||
C2-C4 | 35 | F-F | 21,956 | 19 |
C3-C3 | 10,204 | 1 | Cl-F | 13,279 | 4 |
C4-C4 | 93 | I-I | 9,521 | 1 | |
C1-Ph | 5,962 | 1 | (Nb-C1)орто | -7,63 | 7 |
(Nb-C1)пара | -3,71 | 4 |
* - значения ряда парциальных вкладов и поправок для расчета DfH0g, 298 скорректированы по сравнению с первой редакцией пособия в связи с увеличением представительности выборки веществ, участвующих в определении параметра.