Смекни!
smekni.com

Создание безотходной технологии в производстве кальцинированной соды (стр. 3 из 5)

фильтрация: отделение гидрокарбонат натрия на фильтрах;

кальцинация: обезвоживание и разложение гидрокарбоната натрия и очистка диоксида углерода;

регенерация аммиака (дистилляция): разложение содержащихся в фильтровой жидкости карбонатов и гидрокарбонатов аммония в конденсаторе и теплообменнике дистилляции, с получением диоксида углерода, аммиака и хлорида кальция.

Описанные стадии можно показать в виде принципиальной схемы производства кальцинированной соды, которая и изображена на рис. 3.1.


Рис. 3.1. – Принципиальная схема производства кальцинированной соды аммиачным способом


На основании ряда научных работ была разработана принципиальная схема малоотходного совместного производства соды, хлоридов аммония, кальция и кальциевых продуктов (рис. 3.2).

Рис. 3.2 – Принципиальная схема производства Na2CO3, NH4Cl и кальциевых продуктов [2, 3]

Раствор хлорида натрия (рассол) подают в отделение очистки рассола I, куда подают известковую суспензию и кальцинированную соду. В отделении рассолоочистки происходит удаление кальциевых и магниевых примесей в виде нерастворимых соединений (раздел 1 уравнение 1.6–1.7). Очищенный рассол направляется в отделение абсорбции П. Здесь он насыщается аммиаком и частично диоксидом углерода, поступающим из отделений дистилляции, карбонизации и после вакуум-фильтров.

Рассол охлаждается в отделении карбонизации III, а затем насыщается диоксидом углерода, нагнетаемым компрессорами из известковых и содовых печей. В отделении карбонизации образуется гидрокарбоната натрия, выпадающий в осадок, и хлорид аммония, остающийся в растворе.

После карбонизации суспензия направляется в отделение фильтрации IV, где происходит отделение кристаллов гидрокарбоната натрия.

Сырой гидрокарбонат натрия поступает далее на кальцинацию V в содовые печи, где он разлагается с образованием кальцинированной соды, диоксида углерода и паров воды. Кальцинированная сода направляется на склад.

Газ кальцинации после охлаждения и промывки (отделение VI) компримируется и вновь подается на карбонизацию.

Маточная (фильтровая) жидкость после отделения гидрокарбоната натрия направляется на дистилляцию (отделение VII), где из неё отгоняют диоксид углерода, а затем аммиак. Отгонку ведут острым паром, причем для разложения хлорида аммония жидкость смешивают с известковой водой.

Образующийся парогазовый поток после охлаждения (VIII) поступает на абсорбцию (II), замыкая аммиачный цикл производства соды.

Известковую суспензию, подаваемую на дистилляцию, получают гашением извести (X), поступающей из обжигательных печей (IX). Диоксид углерода, образующийся при обжиге карбонатного сырья подают на карбонизацию.

Суспензию после дистилляции (VII) сбрасывают в специальные накопители – "белые моря" (традиционный способ производства соды) – либо используют для получения хлорида кальция (безотходный комплекс).

Существует дополнительный аммиачный цикл, по которому потоки слабых жидкостей и аммиачных конденсатов, образующихся при охлаждении газов кальцинации (VI) и дистилляции (VIII), направляют на малую дистилляция – отделение XI. Здесь аммиак и диоксид углерода десорбируются паром и соединяются с общим парогазовым потоком, направляемым на абсорбцию в отделение II. Жидкость после малой дистилляции вновь используется для промывки и охлаждения газа кальцинации и так же поступает на промывку гидрокарбоната натрия на вакуум-фильтрах IV и гашение извести X.

В таблице 3.1 приведена характеристика энергоносителей и воды применяемых в технологии производства кальцинированной соды [2].

Таблица 3.1 – Характеристика энергетических ресурсов

Виды энергии Характеристика Источник
Пар Р*,МПа, 3,6; 1,5; 1,2;t °C, 400, 300, 280 Котельная
Вода оборотная Напор 0,4 МПа,t *<26 °С Система оборотного водоснабжения
Электроэнергия Система электроснабжения
Природный газ Малосернистый (теплота сгорания* =36 МДж/м3) Система газоснабжения
Мазут (резервное топливо) Малосернистый (теплота сгорания* =39 МДж/м3) Привозной

* Регламентируемые показатели

4. ОСНОВНОЙ АППАРАТ

Процесс карбонизации (насыщения аммонизированного рассола диоксидом углерода), в результате которого образуется гидрокарбонат натрия, является основным процессом содового производства. На рис. 4.1 изображена упрощенная схема отделения карбонизации [1–3, 5].

Рис. 4.1 – схема отделения карбонизации: 1 – колонна предварительной карбонизации; 2 – теплообменник; 3 – первый промыватель газа колонн; 4 – насос; 5 – осадительная карбонизационная колонна; САР – сборник аммонизированного рассола; ПГКЛ–2 – второй промыватель газа карбонизационной колонны.

Отделение карбонизации (рис. 4.1) комплектуется сериями колонн, при этом производительность каждой серии равна производительности абсорбционной колонны. В состав серии входят осадительные карбоколонны 5, первый промыватель газа колонн 3 и теплообменник 2. Периодически каждую из осадительных колонн ставят на промывку, тогда она выполняет функцию колонны предварительной карбонизации 1. Карбонизационные колонны работают сериями, чтобы обеспечить непрерывность потока подаваемого в отделение фильтрации. Наибольшее распространение получили серии, состоящие из четырех карбонизационных колон, из которых три работают как осадительные, а одна – как колонна предварительной карбонизации.

Как было указано в разделе 2 в осадительных карбонизационных колоннах протекают два параллельных процесс: абсорбция диоксида углерода и кристаллизация гидрокарбоната натрия, причем на последних стадиях эти процессы требуют отвода тепла реакции. Исходя из этого, карбоколонна имеет две зоны: абсорбционную и холодильную. Схема карбонизационной колоны приведен на рис. 4.2.

Карбонизационная колонна представляет собой цилиндрическую пустотелую ёмкость диаметром до 3 м и высотой до 28 м, состоящую из ряда царг (бочек). Сверху в колонну поступает раствор из первого промывателя газа колонн, а в царгу–базу 1 и абсорбционную царгу 3, расположенную над холодильной зоной, подаётся газ. При работе колонна заполнена раствором до определенного постоянного уровня. Поэтому объем поступающего в колонну раствора соответствует объему отбираемой из колонны суспензии.

Для обеспечения более полного поглощения диоксида углерода газ и жидкость движутся в колонне противотоком. Для улучшения процесса теплообмена и массопередачи между царгами устанавливают пассетные контактные элементы – тарелки 5.

Для осуществления нормального технологического процесса суспензию гидрокарбоната натрия постепенно охлаждают при её движении к выходу из аппарата.


Рисунок 4.2 – Карбонизационная осадительная колонна: 1 – царга-база; 2 – холодильная царга; 3 – абсорбционная царга; 4 – сепарационные царги; 5 – пасетная барботажная тарелка.

Для этого в нижней части колонны устанавливают холодильные царги 2, между которыми расположены пассетные контактные элементы. Пассетные тарелки и царги изготавливают из чугуна марки СЧ 18–36, а холодильные трубки – из нержавеющей стали 12Х18Н10Т.

В последнее время кроме представленной конструкции разработана и другая – колонна с перекрестно-точными контактными элементами и переливом (дырчатые переливные тарелки), которые устанавливаются в абсорбционной части колонны (рис. 4.3).


Рис. 4.3 – Карбонизационная колонна с перекрестно-точными тарелками: 1 – абсорбционная царга; 2 – перекрестно-точная тарелка; 3 – холодильная царга.

Такая карбонизационная колонна представляет собой цилиндрическую пустотелую емкость, в которой размещены абсорбционные и холодильные элементы. Абсорбционная (верхняя) зона колонны имеет 17 царг с перекрестно-точными контактными элементами. Холодильная зона имеет 8 холодильных царг, оснащенными трубками в которые вводится вода. Все царги, тарелки и другие узлы и детали карбонизационной колонны выполнены из серого чугуна марки СЧ 18-36. В абсорбционной части колонны устанавливают перекрестно-точные дырчатые контактные элементы с двойным переливом. Холодильная часть карбонизационной колонны может быть выполнена в двух вариантах. В типовом исполнении, между холодильными царгами устанавливаются пассетные противоточные тарелки.

При использовании второго варианта конструкции между холодильными царгами устанавливают переливные контактные элементы [1–3, 5–6].

В таблице 4.1 приведена сравнительная характеристика карбонизационных колонн [1, 2].

Таблица 4.1 – Сравнительная характеристика карбонизационных колонн применяемых в производстве кальцинированной соды

Параметры Тарелки
Пассетные Перекрестно-точные
1-й тип 2-й тип
Диаметр, м 3/2,8 2,68 3/2,8
Высота, м 28 26,1 28
Число холодильных царг 8 10 8
Число абсорбционных тарелок 19 12 12
Поверхность теплопередачи, м2 1344 1000 1344
Производительность, т соды в сутки 230 220 260–280
Степень утилизации натрия, % 72–74 72–74 72–74
Влажность NaHCO3, % 16–18 16–18 16–18
Относительная стоимость колонны, % 100 75 95

Из приведенной таблицы видно, что колонны с перекрестно-точными тарелками, не только имеют более низкую стоимость, чем колонны с пассетными тарелками, но и по некоторым параметрам превосходят их.