Смекни!
smekni.com

Совершенствование технологии получения технического ПАН жгутика (стр. 5 из 7)



Рис.11. Схема прядильной машины для фор­мования полиакрилонитрильного волокна сухим методом: 1 - обогреваемый блок е дозирующими насосами; 2 - фильера; 3 - обогреваемая шахта; 4 - приемные диски;5 -место отсоса газопаровой смеси Рис.12. Схема прядильной головки для фор­мования полиакрилонитрильного волокна из раз­мягченного полимера: 1 - привод шнека; 2 - устройство для загрузки пла­стифицированного сополимера; 3 - шнек; 4 - электро­обогрев; 5 - прядильный насос; 6 - дополнительный электрообогрев; 7 - место отсоса газо- и парообразной смеси (в том числе пары пластификатора); 8 - фильера; 9 - обдувочная шахта; 10 - шахта с обогревом

Стенки шахты обогреваются теплоносителем. Верхняя часть шахты нагревается до 200-250°С, средняя несколько ниже, а нижняя - до 80-110°С. Особое значение имеет строгое выдерживание температуры в шахте. В качестве среды для формования волокна в шахту подается смесь, состо­ящая из воздуха и растворителя или воздуха, растворителя и водяного пара. Содержание диметилформамида в воздухе должно быть меньше ниж­него предела взрывоопасности (50 г/м3) или выше верхнего предела (200 г/м3). В первом случае скорость формования может быть выше, чем во втором. При втором способе более полно регенерируется растворитель, но скорость формования (отбора нити из шахты) составляет только 25 м/мин, в то время как в первом случае скорость отбора нити достигает 200-400 м/мин. Во избежание опасности взрыва вместо воздуха иногда применяется азот или воздух, обогащенный азотом.

Паро-воздушная смесь подается в шахту противотоком при обязательной ламинарности движения в ней. Выходящая из шахты нить, содержащая 8-12% диметилформамида, вытягивается при нагревании до 100-150°С между парой роликов в 5-8 раз, после чего принимается на шпули или в кон­тейнеры. Дальнейшие операции проводятся на других машинах.

Экструдированные струйки полимера затвердевают в результате их охлаждения воздухом и вытягиваются примерно в 3 раза. Образовавшиеся волокна принимаются на шпули, которые направляются затем на промывку для удаления пластификатора, вытягивание и последующие обработки.

В производственном масштабе этот способ не осуществлен, так как он не имеет особых преимуществ перед сухим способом формования волокна из растворов. Положительные стороны метода - меньшее количество рас­творителя, которое приходится регенерировать, более низкие температуры в шахте и меньшие размеры ее компенсируются следующими недостатками: сложностью операции смешения полимера с пластификатором, меньшей равномерностью прядильной массы и большим содержанием растворителя в волокне, выходящем из шахты, что требует более длительной отмывки волокна и, по-видимому, меньшей скорости формования.

Отделочные операции для волокон, полученных сухим способом, аналогичны операциям для волокон, полученных мокрым способом.

Сформованное сухим способом невытянутое волокно отличается от волокон, полученных мокрым способом, отсутствием крупных пустот и пор, малым количеством мелких пор и гантелевидным поперечным срезом [4].

Таким образом, формование ПАН волокон сопровождается сложными физико-химическими и физическими процессами, зависящими от свойств прядильного раствора, геометрических характеристик фильер, условий формования и т.д. Анализ методов получения ПАН волокон свидетельствует о перспективности диметилформамидного способа по мокрому формованию.

Следует отметить, что при диметилформамидном способе процесс регенерации отработанных ванн достаточно прост, по сравнению с солевым способом, и заключается в испарении избытка воды и последующей перегонке растворителя. В этом случае все примеси остаются в кубовом остатке. Для уменьшения гидролиза диметилформамида его перегонку проводят под вакуумом при 90 - 100°С.

1.5. Совершенствование технологии ПАН жгутика с целью получения высокопрочных, высокомодульных углеродных волокон

Качество углеродных волокон (УВ) во многом определяется свойствами исходного ПАН волокна, в частно­сти его дефектность, степень ориентации и структура микрофибрилл.

Среди большого числа дефектов, присущих ПАН волокнам, сформованным по мокрому способу, выделяются два наиболее сильно влияющих на качество УВ: порис­тость и неравномерность по диаметру элементарных нитей (филаментов). Отрицательное влияние пористос­ти на качество УВ проявляется двояким образом. Во-пер­вых, поскольку в структуре УВ сохраняются особеннос­ти структуры исходного ПАН волокна, то сохраняется и пористость, вызывая неравномерность внутренних на­пряжений УВ, его хрупкость. Вторым отрицательным механизмом влияния пористости является снижение тер­мостойкости ПАН волокна, т.е. меньшее значение мак­симально достижимой предельной температуры терми­ческого разложения полимера. Поры служат зародышами, или центрами начала термолиза ПАН волокна и не позволяют при быстром нагреве достичь без интенсив­ного разложения температуры 500-550°С, необходимой для мезофазной перестройки структуры окисленного волокна в процессе карбонизации [12,13].

Возникновение пор в ПАН волокне предопределе­но самой природой мокрого способа формования, при котором объем растворителя в исходном прядильном растворе составляет 72-84%. При коагуляции образует­ся полимерный каркас, занимающий объем, примерно равный объему исходного прядильного раствора, так как диаметр скоагулировавшего волокна практически оста­ется таким же, как диаметр жидкой струи. Количество и размеры пор определяются структурой образовавшегося каркаса и условиями его поперечной и продольной усадки во время пластификационного вытягивания, про­мывки и сушки волокна. Структура каркаса определяет­ся условиями осаждения (коагуляции). Высокое содер­жание осадителя, чаще всего воды, в осадительной ванне приводит к быстрой коагуляции и образованию жест­кого каркаса с большим размером пор. Свежесформованное волокно обладает неудовлетворительной способ­ностью к ориентационному вытягиванию. Все это отри­цательно влияет на качество конечного углеродного во­локна. При снижении содержания осадителя пористость ПАН волокна уменьшается [14], что приводит к получе­нию УВ с повышенной прочностью и эластичностью. Однако снижение содержания осадителя ниже некото­рого предела вновь сопровождается повышением пори­стости и снижением качества УВ. Это явление, по-види­мому, связано с изменением механизма фазового распа­да прядильного раствора. При достаточно высоком со­держании осадителя прядильный раствор распадается на твердую полимерную фазу (каркас) и низкомолекулярную жидкую фазу (смесь растворителя и осадителя). Снижение концентрации осадителя ниже определенно­го предела сопровождается распадом прядильного ра­створа на две жидкие фазы - полимерную и низкомоле­кулярную. Капли жидкой полимерной фазы становятся источником повышенной пористости.

Условия последующих обработок свежесформованного ПАН волокна также эффективно влияют на его по­ристость и качество получаемого из него УВ. Особенно существенным оказалось влияние условий пластифика-ционной вытяжки [15]. Ее осуществление в среде насы­щенного пара повышает пористость ПАН волокна на 15-20% по сравнению с жидкостной пластификационной обработкой; соответственно прочность УВ на разрыв снижается на 5-10%.

Повышение температуры сушки от 80 до 140°С при­водит к снижению пористости ПАН волокна с 48 до 29 усл. ед. Повторное смачивание волокна и сушка позволя­ют снизить пористость до 20 усл. ед. [14]. Дополнительно­го снижения пористости до 10-15 усл. ед. можно достичь при термофиксации ПАН волокна при 140-180°С.

Другой вид дефектности ПАН волокна, неблагоприятно сказывающийся на свойствах конечного УВ - это неравномерность филаментов по диаметру. Ее обычно характеризуют коэффициентом вариации линейной плотности филаментов. Наилучший результат достигается при Ку = 3-5%. Совершенно недопустимо использовать ПАН жгутик с Kу > (8-10)%. Высокое значение Kуозна­чает присутствие в ПАН жгутике большого количества филаментов с повышенным диаметром 18-20 мкм, т.е. ~0.3 текс, которые с трудом перерабатываются по технологии, рассчитанной на применение филаментов линейной плотностью 0,1 текс.

Высокая неравномерность ПАН нитей по диаметру филаментов обусловлена явлением деформационного резонанса формующихся струй, который заключается в пульсации диаметра струй вследствие периодического обрыва их внешнего слоя расширенной части струи, так называемой луковицы, и релаксации оборванных слоев с образованием утолщения по обе стороны от точки обрыва. Подавление деформационного резонанса возмож­но за счет изменения условий истечения прядильного раствора или осаждения формующихся волокон. Во всех случаях необходимо стремиться к минимальной дефор­мации луковицы. Это может достигаться за счет умень­шения самой луковицы путем увеличения диаметра отверстий фильеры или отношения длины капилляров отверстий к их диаметру, снижения вязкости или скорости истечения прядильного раствора. Уменьшение диаметра луковицы приводит к снижению фактической фильерной вытяжки и соответственно к уменьшению вероятности обрыва наиболее напряженных внешних слоев луковицы. Снижение деформации луковицы достигается также повышением или понижением концентрации осадителя в осадительной ванне. При повышении концентрации осадителя отверждение струи происходит непосредственно у поверхности фильеры. Поэтому рас­ширение струи в виде луковицы не реализуется. В этом случае формуются жгутики с высокой равномерностью по диаметру филаментов. Однако они, как правило, име­ют низкие показатели из-за высокой жесткости условий осаждения [12].