Смекни!
smekni.com

Синтез хлороформа. Реакции нуклеофильного замещения и элиминирования галогеналканов (стр. 2 из 5)

Методика: к раствору 30г (0,19моля) йодистого калия в 100 мл воды, помещенному в круглодонную колбу емк. 1,5л, снабженную мешалкой, приливают 10мл (8г-0,13моля) ацетона и, при перемешивании, небольшими порциями, около 300 мл 5%-ного водного раствора гипохлорита натрия. Конец реакции заметен по прекращению выделения желтого осадка йодоформа. Обычно он наступает после прибаления немного больше 300 мл раствора гипохлорита. Мешалку выключают, дают отстояться 0,5часа, отсасывают йодоформ на воронке Бюхнера и осадок тщательно промывают водой. Высушенный йодоформ перекристаллизовывают из этилового спирта (около 300 мл) и получают его в виде желтых кристаллов (т. пл. 1190) с характерным запахом. Выход – 17,5г (35%) теоретического.

Йодоформ получают действием на ацетон йодистого калия в пристутствии йода, действием на этиловый спирт, изопропиловый спирт или ацетон йодистого калия ил окислителей, таких, как гипохлориты и ли дихлорамины в щелочной среде. Электрохимический метод получения йодоформа заключается в электролизе раствора йодистого калия, содержащего карбонат натрия, в присутствии этилового спирта.

1.4.5. Промышленная методика производства йодоформа [5]

Молекулярный вес 394. Удельный вес 2,0. Лимонно-желтые гексагональные листочки или кристаллы в виде столбиков неприятного, сильно прилипчивого запаха. Растворимрим в 14000 ч. воды при 150С в 70 ч холодного винного спирта и в 10ч при 800, а также в эфире, хлороформе и сероуглероде. Выше 1200 разлагается. Получение соединяют с получением йодистого калия. Если йод, ацетон и едкое кали действуют друг на друга, то приблизительно 40% взятого йода превращаются в йодоформ, остаток дает йодистый калий и йодноватокислый калий. Сырьем для производства йодоформа служат:

Технический йод. Выбирают такие сорта, которые растворяются в едком кали с малым остатком и свободны от хлористого йода. На последнее обстоятельство нужно особенно обращать внимание в случае японского йода.

Ацетон. Берут такое количество, которое требуется для производства пороха.

Раствор едкого кали. Обычный продажный раствор технического едкого кали.

Спирт. Для некоторых сортов йодоформа для осаждения нужен спирт; он не участвует в процессе образования йодоформа, но служит только для получения определенных его сортов. Соответственно спиртовому законодательству различных стран его можно получать свободно, если он денатурирован метиловым спиртом или самим йодоформом.

2. Литературный обзор

2.1. Реакции нуклеофильного замещения галогеналканов

Благодаря доступности галогеналканов и легкости, с которой они вступают в реакции, круг этих реакций очень широк. Наиболее важные из них приведены в таблице 1.

Метилгалогениды CH3-X, первичные RCH2-X, вторичные R1R2CH-X, третичные R1R2R3-X алкилгалогениды взаимодействуют с нуклеофильными реагентами по разным механизмам в зависимости от строения алкила.

Таблица 1.

Реакции нуклеофильного замещения

Нуклеофил Nu Продукт реакции R-Nu
НО-или Н2ОR1O-или R1OH Спирт ROHПростой эфир ROR1
Сложный эфир
NºC- Нитрил карбоновой кислоты R-CºN
NO2- Нитросоединение R- NO2
NH3 Соль первичного амина RNH3+X-
R1NH2, R1R2NH Соль вторичного или третичного аминаRR1NH2+X-, RR1R2NH+ X-
R1CºC- Алкины R1CºC-R
R1C- R1C-R
I- Иодиды R-J

2.1.1. Бимолекулярное нуклеофильное замещение

Типичный механизм взаимодействия метилгалогенидов и первичных алкилгалогенидов с Nu- бимолекулярное нуклеофильное замещение SN2. По такому механизму протекает реакция бромметана с едким натром.

Стадии процесса. Нуклеофил атакует атом углерода с тыла, со стороны наиболее удаленной от брома (рис.2.1, а). Если сталкивающиеся частицы имеют достаточную энергию, то начинает образовываться связь углерод-кислород, а связь углерод-бром растягивается, атом углерода переходит в sp2-состояние. В этом состоянии атом углерода связан сразу с пятью атомами. Три атома водорода и углерод лежат в одной плоскости, а группы НО- и Br- располагаются на прямой, перпендикулярной этой плоскости (рис. 2.1, б). Отрицательный заряд на атоме кислорода уменьшился, так как кислород уже подал свою пару электронов на атом углерода, а отрицательный заряд на атоме брома увеличился, поскольку бром в определенной мере оттянул на себя пару электронов от углерода. Реакция заканчивается отщеплением иона брома и образованием ковалентной связи углерод-кислород, атом углерода опять становится тетраэдрическим (рис. 2.1, в).

а б в

Рис.2.1. Бимолекулярное нуклеофильное замещение:а - исходные соединения: заряд локализован на атоме кислорода; б - переходное состояние (активированный комплекс), отрицательный заряд распределен между атомом кислорода и атомом брома; в - продукты реакции

Энергетическая диаграмма реакции (рис. 2.2) изображает изменение потенциальной энергии в ходе реакции нуклеофильного замещения.

Рис.2.2. Диаграмма изменения потенциальной энергии в реакции бимолекулярного нуклеофильного замещения, SN2 - процесс согласованный одностадийный: а - энергия исходных веществ, б - энергия переходного состояния, в - энергия продуктов реакции.

Скорость реакции. Гидролиз бромистого метила является реакцией второго порядка, скорость его зависит от концентрации двух веществ и определяется по формуле V = K [R-Hal] [Nu]. Термин «бимолекулярное замещение» означает, что в скорость определяющей стадии участвуют две частицы. Поскольку разрыв связи углерод-уходящая группа и образование связи нуклеофил-углерод происходят одновременно, бимолекулярное нуклеофильное замещение называют согласованным процессом.

Концентрация нуклеофильного реагента. Высокая концентрация нуклеофила увеличивает скорость SN2- реакции.

Растворитель. Выбор растворителя диктуется следующимиусловиями:

а) достаточно хорошая растворимость реагентов,

б) лучшая сольватация переходного состояния по сравнению с исходными соединениями,

в) предотвращение побочных реакций.

Реакции, в которых из нейтральных молекул образуется полярное переходное состояние, значительно ускоряются при увеличении полярности растворителя: более полярный растворитель в большей степени стабилизирует полярное переходное состояние, чем исходную систему (рис.2.3.а).


Рис.2.3. Влияние полярности растворителя на скорость SN2: а - повышение полярности растворителя стабилизирует АК в большей степени, чем исходное соединение, энергия активации уменьшается, скорость реакции увеличивается, б - повышение полярности растворителя стабилизирует исходную систему в большей степени, чем АК, энергия активации увеличивается, скорость реакции уменьшается.

Если в исходной системе имеется нуклеофил с полным отрицательным зарядом, то этот заряд стабилизируется в определенной степени в результате электростатического притяжения между молекулами полярного растворителя и ионом Nu-.

В активированном комплексе заряд распределен между атомом, образующим новую связь, и уходящей группой. Полярный растворитель будет стабилизировать и активированный комплекс и исходное состояние. Увеличение полярности растворителя несколько замедлит реакцию, так как замена менее полярного растворителя на более полярный увеличит в большей степени стабильность исходного соединения, в меньшей - активированного комплекса (рис. 2.3, б).

Наиболее подходящими для синтеза соединений и изучения механизма SN2 являются апротонные биполярные растворители, т.е. растворители с высокой диэлектрической проницаемостью, но не способные к образованию водородных* связей:

Апротонные растворители не могут сольватировать анионы за счет образования водородных связей с ними и химики называют их «голыми». Биполярные апротонные растворители особенно необходимы для осуществления реакций SN2 в случае применения малоактивных нуклеофилов. В реакции бромэтана (SN2) с гидроксиданионом лучшим растворителем является водный раствор этанола с массовой долей 80%; добавление воды к этанолу служит для предотвращения побочной реакции отщепления бромоводорода.

Уходящие группы. «Хорошими» уходящими группами являются те группы, которые, оторвавшись от атома углерода, образуют устойчивые анионы. Сильные основания являются обычно «плохими» уходящими группами, слабые основания - «хорошими» уходящими группами.