Смекни!
smekni.com

Синтез химико-технологической схемы (стр. 3 из 4)

f1(Vабс)=-0,001*(Vабс)^2+0,0152*Vабс+1,2384;

f2(П)=-0,0311*П+1,5259 ;

f3(Твх)=0,7074*exp(0,0019*Твх);

Твых=53,95*(-0,001*(Vабс)^2+0,0152*Vабс+1,2384)*

*(-0,0311*П+1,5259)*(0,7074*exp(0,0019*Твх)).

η=0,9802;

ε=1,9 %.

2. y: результат ранжирования факторов: x1-П; x2-Vабс; x3-Твх.

f1(П)=0,0015*П²-0,0208*П+0,9224 ;

f2(Vабс)=0,0178*Vабс+0,5546;

f3(Tвх)=-0,3571*ln(Tвх)+2,8582;

y=84,4*(0,0015*П²-0,0208*П+0,9224)*(0,0178*Vабс+0,5546)*

*(-0,3571*ln(Tвх)+2,8582);

η=0,9743;

ε=1,33 %.

Обе модели адекватно описывают процесс.

В соответствии с Заданием для абсорбера 1 определены значения входных параметров: Твх=180°C, П=18 м³/м², Vабс=25 м³. В соответствии с разработанной статистической моделью для абсорбера 1 получены значения выходных параметров: Твых=51,6°C, y=87,57.

В соответствии с Заданием для абсорбера 2 определены значения входных параметров: Твх=175°C, П=18 м³/м², Vабс=26 м³. В соответствии с разработанной статистической моделью для абсорбера 2 получены значения выходных параметров: Твых=49,2°C, y=90,02.

Полученные значения выходных параметров использовались для расчета абсорберов и для построения системы теплообмена.

1.2 Математическое описание аппаратов

1.2.1 Реакторы идеального вытеснения

Для получения достоверных данных о протекающем процессе требуется, очевидно, определить степень влияния различных факторов (гидродинамический режим, температура, давление и т.д.) на протекающий в данном аппарате химический процесс. Для описания непрерывных химических процессов используются модели химических реакторов идеального вытеснения (РИВ) и идеального смешения (РИС).

Модель идеального вытеснения характеризуется так называемым поршневым движением потока – продольное перемешивание в аппарате отсутствует, поперечное перемешивание в слоях полное. Такая модель удовлетворительно описывает, например, многие процессы в длинных трубах, особенно заполненных зернистыми слоями. В аппаратах РИВ в ходе процесса концентрация реагентов (а следовательно, и движущая сила) монотонно снижается; одновременно уменьшается скорость процесса, а также производительность аппарата. Соответственно, для реакций, протекающих в РИВ, математическое описание представляет собой систему обыкновенных дифференциальных уравнений. В общем виде уравнение материального баланса может быть записано следующим образом:

, (17)

где ri – скорость реакции по j-му реагенту в данный момент времени.

Для нашего случая система уравнений материального баланса будет иметь вид:

. (18)

Поскольку в нашем случае протекает экзотермическая реакция, то систему необходимо дополнить уравнением теплового баланса, учитывающим изменение температуры во времени:

, (19)

где

- коэффициент адиабатического разогрева, К;

q – тепловой эффект реакции, ккал/кмоль;

Cp – мольная теплоемкость реакционной смеси, ккал/(кмоль*К).

Для решения данной системы необходимо определить начальные условия. В данном случае ими являются концентрации компонентов А,В и С, а также температура Т на входе в реактор (τ=0). Поскольку требуется определить концентрации компонентов и температуру на выходе из реактора, заранее определяется время нахождения реакционной смеси в реакторе (время контакта). Для РИВ время контакта в i-м реакторе определяется по формуле:

, (20)

где Vi – объем i-го реактора, м³;

Wi – объемный расход реакционной смеси на входе в i-й реактор, м³/с.

В данной работе решение системы проводилось с помощью метода Рунге–Кутта (использовался программный продукт Mathcad 2001 Professional и стандартная функция rkfixed). Определялись концентрации компонентов и температура на выходе из реакторов, проводилась корректировка объемного расхода реакционной смеси после каждого реактора (поскольку в результате реакции объем смеси уменьшался). Расчеты реакторов велись совместно с расчетом абсорберов, поскольку значения расхода и концентраций компонентов на выходе из 3-го реактора были необходимы для расчета 1-го абсорбера, и т.д. Данные по реакторам, полученные в результате расчетов, сведены в таблицу 3.

Таблица 3. Результаты расчета РИВ

№ реактора V,м³ Объемный расход смеси на входе в реактор, м³/ч Твх,К Концентрации компонентов, об.доли Твых,К
На входе в реактор На выходе из реактора
А0 В0 С0 А В С
1 70 120000 688 0,08 0,09 0,0008 0,021 0,06 0,06 858
2 50 115800 733 0,021 0,06 0,06 0,007013 0,053 0,074 773,1
3 50 114900 693 0,007013 0,053 0,074 0,00373 0,051 0,077 702,4
4 60 106900 688 0,004 0,055 0,01 0,0002584 0,053 0,014 698,7
5 40 106700 678 0,0002584 0,053 0,014 0,0001597 0,053 0,014 678,3

Как видно из таблицы 3, смесь реагирует достаточно хорошо в 1-м и 2-м реакторах, а в 5-м реакторе почти не реагирует. Данный факт обуславливается чрезвычайно малой концентрацией компонента А в смеси, поступающей в аппарат. В то же время в конечной смеси, выходящей из 5 –го реактора, высока концентрация В, что указывает на недостаток компонента А в исходной смеси.

1.2.2 Абсорберы

В абсорберах происходит поглощение (абсорбция) компонента С из газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции может быть описан с помощью уравнений массообмена. Однако, поскольку в п. 1.1.2. была получена статистическая модель абсорберов и определены выходные параметры – Твых и степень поглощения y, в расчетах абсорберов 1 и 2 мы пользовались ею. Расчет абсорберов велся совместно с расчетом реакторов, что обусловлено причинами, приведенными выше. Результаты расчета абсорберов приведены в таблице 4.

Таблица 4. Результаты расчета абсорберов.

Параметр Абсорбер 1 Абсорбер 2
Vабс, м³ 25 26
Плотность орошения, м³/м² 18 18
Твх, °C 180 175
Объемный расход смеси на входе в абсорбер, м³/ч 114600 106700
Концентрации компонентов на входе в абсорбер, об.долиАВС 0,003730,0510,077 0,00015970,0530,014
Твых, °C 51,6 49,2
Степень абсорбции y 0,8757 0,9002
Концентрации компонентов на выходе из абсорбера, об. долиАВС 0,0040,0550,01 0,00016170,0540,001415
Количество отделенного компонента С, кмоль/ч 344,97 60,014

Как видно из таблицы 4, абсорбер 1 работает достаточно хорошо, а для абсорбера 2 характерна низкая производительность. Отчасти это объясняется причинами, указанными в п. 1.2.2.

1.3 Синтез оптимальной тепловой системы с помощью

эвристического метода

Задача синтеза систем теплообмена формулируется следующим образом. Пусть имеется m горячих и n холодных потоков, которые мы будем называть основными технологическими потоками. для каждого из этих потоков заданы начальные температуры

, конечные температуры
и значения водяных эквивалентов
. Под водяным эквивалентом будем понимать произведение теплового расхода на удельную теплоемкость. Необходимо определить структуру технологических связей между теплообменными аппаратами заданного типа, а также площади поверхности теплообмена каждого аппарата, которые обеспечивали бы заданные начальные и конечные температуры основных технологических потоков при минимальном возможном значении приведенных технологических затрат Зпр, связанных с эксплуатацией синтезированной тепловой системы.

Синтезируемую тепловую систему можно разделить на две подсистемы: внутреннюю (рекуперативную), где в теплообмене участвуют только основные технологические потоки, и внешнюю, где при теплообмене используются вспомогательные технологические потоки. При этом внешняя подсистема используется только тогда, когда во внутренней подсистеме не удается получить заданные конечные температуры.

Приведенные технологические затраты, связанные с эксплуатацией синтезируемой тепловой системы, могут быть выражены следующим образом:

, (21)

где З1 – затраты на рекуперативные теплообменники, ус.д.ед.;

З2 – затраты на вспомогательные теплообменники, ус.д.ед.;

З3 – затраты на вспомогательные теплоносители, ус.д.ед.;

Ен – нормативный коэффициент эффективности.

Если во внутренней подсистеме используется k1 теплообменных аппаратов, а во внешней l1 , то

, (22)

где Ц – стоимость теплообменника.

При расчете i-го теплообменника любой подсистемы используется формула:

, (23)

где Fi – площадь поверхности теплообмена i-го теплообменника, м²;

a – стоимостной коэффициент, зависящий от типа теплообменника.

Затраты на вспомогательные теплоносители определяются по формуле:

, (24)

где θ – продолжительность годовой эксплуатации системы, ч/год;

Цp – стоимость p-го вспомогательного теплоносителя в p-м вспомогательном теплообменнике, ус.д.ед./кг;