Смекни!
smekni.com

Синтез тиоцианата ртути (стр. 2 из 3)

2(SCN)2 + H2S = S(SCN)2 + 2HSCN

Роданистая сера была обнаружена еще в 1828 году Лассенем, как продукт взаимодействия хлористой серы и роданида ртути:

SCl2 + Hg(SCN)2 = HgCl2 + S(SCN)2[6]

2.3. Тиоциановая кислота

Тиоциановая кислота (роданистоводородная кислота, HNCS) представляет собой бесцветную, маслянистую, резко пахнущую жидкость ( при 5 °С). При температуре -110° является белой кристаллической массой (Кд=0,14). Она является сильной кислотой.

На организм человека тиоциановая кислота оказывает токсическое действие, раздражая слизистые оболочки. Она содержится в соке лука Allium соера и в корнях некоторых других луковичных растений. [2]

2.3.1 Некоторые характеристики тиоциановой кислоты

Строение H-N=C=S.
Температура плавления (в °C) -110
Температура разложения (в °C): -90
Показатель диссоциации pKa (1) = 0,85 (180 C)
ΔH0возг,298, кДж/моль 104,6
S0298, Дж/(К*моль) 247,36
Cp,298,Дж/(К*моль) 48,16

В интервале от -90 С до -85 С HNCS полимеризуется в бесцветную кристаллическую массу. При остарожном нагревании в вакууме образуется бледно-желтая, растворимая в эфирах родануровая кислота (HNCS). Если тиоциановую кислоту нагреть до комнатной температуры при обычном давлении на воздухе или в вакууме, то вещество медленно окрашивается в темно-красный цвет. При температуре около +30 С происходит быстрое превращение со значительным выделением тепла и вспенивание.

Водные растворы тиоциановой кислоты устойчивы только при концентрации до 5% (в растворе по свойствам схожа с хлористоводородной кислотой), в более концентрированных растворах она разлагается с образованием, так называемого ксантогенового водорода и других продуктов.

Восстанавливается HNCS цинком в соляной кислоте до метиламина и 1,3,5-тритиана. Окисляетсятиоциановая кислота KMnO4 и H2O2 - до HCN, Br2 - до BrCN. Мягкое окисление приводит к родану (SCN)2. А сероводородом разлагается до сероуглерода и аммиака.

HSCN + 3H2O2 = HCN + H2SO4 + 2H2O

2.3.2. Получение HNCS

Тиоциановую кислоту получают из роданидов, например:

KSCN + KHSO4 = K2SO4 + HNCS

Безводную тиоциановую кислоту получают при нагревании роданида свинца (ртути) в токе сероводорода:

Pb(SCN)2 + H2S = PbS + 2HSCN

2.3.3. Применение роданистоводородной кислоты

Практическое применение находят только производные тиоциановой кислоты, например роданиды (неорганические тиоцианаты), а также сложные эфиры (органические тиоцианаты), используемые как инсектициды и фунгициды.[1]

2.4. Тиоцианаты неорганические

Тиоцианаты неорганические (неорганические роданиды (название от греческого rhodon - роза, по ярко-красной окраске тиоцианата железа Fe(SCN)3) или сульфоцианиды), соли не выделенной тиоциановой кислоты (тиоциановая кислота (роданисто-водородная кислота) HNCS - желтоватая жидкость с температурой плавления -110°С; длины связей (нм) 0,09887 (H—N), 0,21164 (N—С) и 0,15605 (С—S), угол HNC 134,98°). Кристаллические вещества растворимые в воде, спирте, эфирах и ацетоне.

2.4.1. Общие характеристики некоторых тиоцианатов

Соединения Тпл,0С Ткип, 0С Плотность, г/см3 Растворимость в воде, г/ см3
NH4NCS 146,6 170* 1,3057 120 (при 0 0С)
KNCS 172,3 500* 1,886 217 (при 20 0С)
NaNCS 287 300* 1,73 166 (при 25 0С)
CuSCN 1084 - 2,85 5∙10-4(при 18 0С)
Ca(SCN)2*3H2O разл. - - 150 (при 0 0С)
Pb(SCN)2 195* - 3,82 0,05 (при 20 0С)

* - с разложением. [7]

Тиоцианат аммония (NH4NCS) - водорастворимые бесцветные кристаллы, расплывающиеся на воздухе, на свету и на воздухе приобретают красную окраску, при нагревании разлагаются.

Тиоцианат натрия (NaNСS) – бесцветные гигроскопические кристаллы с ромбической решоткой. Ядовит.

Тиоцианат калия (KSCN) – водорастворимый белый порошок, при плавлении приобретает синеватый оттенок, а при остывании снова становится белым.

Тиоцианат одновалентной меди (CuSCN) - беловатый, сероватый или желтоватый порошок или паста не растворимый в воде.

Тиоцианат двухвалентной меди (Cu(SCN)2) - черный порошок, не растворимый в воде, легко превращается в тиоцианат одновалентной меди.

Тиоцианат кальция (Ca(SCN)2*3H2O). Бесцветные кристаллы, расплывающиеся на воздухе и растворимые в воде.[8]

Наличие в тиоцианатном ионе атомов серы и азота, находящихся в промежуточных степенях окисления, обуславливает его способность проявлять как окислительную, так и восстановительную активность в химических реакциях:

2KNCS + I2 = KI + (SCN)2(ок-ные свойства)

KNCS + 10KOH + 8KMnO4 = KOCN + 8K2MnO4 + K2SO4 + 5H2O(вост-ные свойства)

В водных растворах все тиоцианаты окисляются О2 до сульфатов, взаимодействуют с Сl2 иBr2 с образованием циангалогенидов, восстанавливают Fe до цианидов металлов.

Получают тиоцианаты из цианатов металлов и S, обменной реакцией сульфатов или нитратов металлов с тиоцианатами Ba или Na, взаимодействием гидроксидов или карбонатов металлов с HCN. Наиболее характерны реакции - окисление, восстановление, галогенирование, а также обменные реакции с другими тиоцианатами. Например:

3NH4NCSк + 2Н2O = H2C2N2S3 + 2(NH3*H2O) + NH4CN

2NH4NCSр + I2 = 2NH4I + (SCN)2

KNCS + Fe = KCN + FeS

2KNCS + Pb(NO3)2 = Pb(SCN)2 + 2KNO3

Тиоцианаты щелочных металлов и аммония разлагаются при нагревании, например:

Термическая изомеризация NH4NCS положена в основу промышленного получения тиомочевины:

Токсичность тиоцианатов сравнительно невелика (например: KNCS раздражает кожу, при длительном воздействии угнетает щитовидную железу, поражает почки; NH4NCS вызывает явление ксантопсии, т. е. видение предметов в желтом цвете). Токсичность других тиоцианатов, например Pb(SCN)2 или Hg(SCN)2, во многом определяется физиологическим воздействием входящих в них металлов. Тиоциановая кислота содержится в соке лука Allium соера и в корнях других растений. Тиоцианаты в небольших количествах найдены в слюне и в желудочном соке животных. В слюне человека содержится в среднем 0,01% SCN-, в крови около 1,3 мг в 100 мл в виде KNCS.

2.4.2 Получение тиоцианатов

Основные методы получения HNCS – это взаимодействие (Э)NCS с KHSO4 или ионный обмен водных растворов NH4NCS (получают нагреванием смеси аммиака и сероуглерода).Родан или тиоциан обычно получают по реакциям:

Cu(SCN)2 = CuSCN + 0,5(SCN)2

Hg(SCN)2 + Вr2 = HgBr2 + (SCN)2

Тиоцианаты щелочных металлов и аммония получают при улавливании цианистых соединений, содержащихся в коксовом газе, растворами соответствующих полисульфидов. Кроме того, NH4NCS получают взаимодействием NH3 с CS2, a KNCS и NaNCS получают сплавлением KCN или NaCN с серой.

KCN + S = KSCN(сплавление)

Другие тиоцианаты синтезируют обменной реакцией сульфатов, нитратов или галогенидов металлов с тиоцианатом Ba, К или Na:

KSCN + AgNO3 = AgSCN + KNO3

или взаимодействием гидроксидов или карбонатов металлов с HNCS:

HSCN + NaOH = NaSCN + H2O

CuSCN получаются из тиоцианатов щелочных металлов, гидросульфита натрия и сульфата меди. Ca(SCN)2*3H2O получают действием оксида кальция на тиоцианат аммония.


2.4.3. Комплексные соединения тиоцианатов

Тиоцианаты образуют комплексные соединения, в которых металл в зависимости от донорно-акцепторных свойств лиганд может координироваться как по атому N, так и по атому S. [9]

Hg(ΙΙ) образует тригональные комплексы тиоцианата ртути с пнитробензоилгидразином (L). Взаимодействием соответствующего Hg(SCN)2c пнитробензоилгидразином и сплавлении при температуре 50-600С были получены HgL(SCN)2. Экспериментально установлено, что данное вещество не растворимо в большинстве органических растворителях, умеренно растворимы в MeCN, причем их растворы не являются электролитами. В спектре HgL(SCN)2 проявляются полосы C-N, C-S и C-S, что указывает на кольцевой характер группы SCN и ее координацию с Hg2+ через атом S. Исходя из того, что лиганд L монодентантен, а группа SCN кольцевая был сделан вывод, что нейтральный Hg(SCN)2 имеет мономерное трехкоординационное строение. [10]

2.4.4 Применение тиоцианатов

Тиоцианаты используют в промышленности. NH4SCN используется в гальваностегии, в фотографии, при крашении и набивке тканей (в частности, для сохранения свойств шелковых тканей), для приготовления охладительных смесей, для получения цианидов и гексацианоферратов (II), тиомочевины, гуанидина, пластмасс, адгезивов, гербицидов.

NaSCN используется в фотографии, как протрава при крашении и набивке тканей, в медицине, как лабораторный реагент, в гальваностегии, для приготовления искусственного горчичного масла, в резиновой промышленности.