Смекни!
smekni.com

Синтез нитробензойной кислоты (стр. 5 из 5)

Сходная картина наблюдается при сравнении значений теплот сгорания бензола, вычисленных по аддитивной схеме и найден­ных экспериментально. Соответствующая разность оказалась равной 159 кДж/моль. Таким образом, определение энергии стабилизации (резонанса) молекулы бензола двумя независимыми путями дало практически совпадающие результаты.

Замещенные одноосновные ароматические кислоты

Нитробензойные кислоты

При нитровании бензойной кислоты получается 78%-мета-, 20% орто- и 2% пара-нитробензойных кислот. Два последних изомера без примесей других изомеров получают окис­лением орто- и пара- нитротолуолов.

Нитробензойные кислоты обладают более сильными кислотными свойствами, чем бен­зойная кислота = 6,6·10-5): о-изомер — в 100 раз, м-изомер — в 4,7 раза и п-изомер — в 5,6 раза. Аналогичная закономерность наблюдается и в случае галогенозамещенных кислот.

Константы ионизации замещенных бензойных кислот

Заместитель Положение
орто- мета- пара-
CH3 1.2·10-4 5.3·10-5 4.2·10-5
OH 1.1·10-3 8.3·10-5 3.3·10-5
OCH3 8.0·10-5 8.2·10-5 3.4·10-5
Br 1.4·10-3 1.5·10-4 1.0·10-4
Cl 1.2·10-3 1.5·10-4 1.0·10-4
NO2 6.7·10-3 3.1·10-4 3.7·10-4

Увеличение силы кислот с электроноакцепторными заместителями в п- и м-положении объясняется увеличением подвижности кислотного протона благодаря ослаблению связи О—Н (уменьшение электронной плотности)

Уравнение Гаммета было впервые использовано при изучении диссоциации м- ип-замещенных бензойных кислот. Для этой реакционной серии значение р было приняторавным 1 и, следовательно, уравнение Гаммета имело вид lgК/К0= ρσгде К — константа скорости или константа равновесия для замещенного соединения; К0аналогичная константа для незамещенного соединения; σ — константа, характеризу­ющая полярное влияние заместителя; ρ — константа, определяющая степень чувствитель­ности реакционного центра к полярным эффектам. Константа σ зависит только от природы заместителя, а константа ρ — от характера реакции.

Соединения с различными заместителями, но с одним и тем же реакционным центром об­разуют реакционную серию.

σ-Константы некоторых заместителей приведены в таблице:

Заместитель σ Заместитель σ
Мета- Пара- Мета- Пара-
-H 0 0 -I 0.352 0.18
-CH3 -0.069 -0.17 -OH 0.127 -0.37
-C2H5 -0.07 -0.151 -O -0.708 -0.519
-C(CH3)3 -0.1 -0.197 -OCH3 0.115 -0.268
-CF3 0.43 0.54 -NH2 -0.16 -0.66
-COOH 0.355 0.265 -NHCOCH3 0.21 0
-COO- -0.1 0 -N(CH3)2 -0.211 -0.83
-COOC2H5 0.37 0.45 -N(CH3)3 0.88 0.82
-C0CH3 0.376 0.502 -NO2 0.71 0.778
-F 0.337 0.062 -SO2 0.05 0.09
-CI 0.373 0.227 -SO2NH2 0.46 0.57
-Br 0.391 0.232

σ-Константа положительна, если заместитель оттягивает электроны, и отрицательна, если заместитель является доно­ром электронов.

В зависимости от механизма реакции величина ρ также принимает положительные или отрицательные значения. Она положительна, если увеличение скорости реакции вызвано уменьшением электронной плотности в реакционном центре, и отрицательна, если увеличе­ние скорости реакции связано с возрастанием электронной плотности в реакционном центре. Таким образом, по знаку ρ можно судить о механизме реакции.Для определения величины ρ достаточно изучить кинетику превращений ряда соедине­ний, входящих в данную реакционную серию. Для всех других соединений серии можно рассчитывать константы скорости реакции, ис­пользуя значения σ из таблицы. В настоящее время используется несколько систем реакционных констант σ, учитываю­щих более тонкие взаимные влияния атомов. Установление возможности применения различных корреляционных уравнений называ­ется корреляционным анализом.

Для σ-замещенных соединений простая корреляция обычно не наблюдается, так как σ-заместители влияют друг на друга не только индукционно, но и различными другими спосо­бами (стерический эффект, водородная связь, эффект поля и т. д.).

Корреляционный анализ используется в органической химии для установления механиз­ма реакций, строения реагирующих веществ.

Заместители в о-положении действуют более сложно. Определенную роль играет здесь образование водородной связи. Последним можно объяснить большую силу салициловой кислоты по сравнению с бензойной (в 17 раз):

Нитрование бензойной кислоты проводят в довольно жестких условиях нагреванием с такими реагентами, как дымящая азотная кислота, крепкая нитрующая смесь, смесь нитрата Щелочного металла с концентрированной серной кислотой. Как при нитровании нитробензола, реакция приводит к образованию смеси нитропроизводных, в которой преобладает м-изомер, а п-изомер содержится лишь в следовых количествах:

3.Обсуждение результатов

м-Нитробензойную кислоту можно получить при взаимодействии бензойной кислоты с нитратом калия в серной кислоте. Выпавший осадок содержит 78%-мета-, 20% орто- и 2% пара-нитробензойных кислот. Очищать м-нитробензойную кислоту можно двумя способами:

IОсадок переносим в колбу для перегонки с водяным паром и отгоняем непрореагировавшую бензойную кислоту.

м-Нитробензойную кислоту очищаем в виде бариевой соли. Для этого сырую кислоту растворяем в 20-кратном по массе количестве воды и обрабатываем горячим раствором гидроксида бария до слабощелочной реакции. Затем добавляем воду и смесь кипятим до полного растворения осадка. Раствор фильтруем через воронку для горячего фильтрования, фильтрат охлаждаем и продукт отфильтровываем.

Для получения свободной кислоты бариевую соль кипятим с 10%-ной соляной кислотой. После охлаждения выпавшую м-нитробензойную кислоту отфильтровываем, промываем холодной водой и перекристаллизовываем из воды.

II Полученный осадок перекристаллизовываем сначала из этилового спирта, а затем из ацетона.

В результате получаем белый кристаллический порошок с Тпл=141-143. Литературная Тпл=140-141.

В трегорлую колбу, снабженную механической мешалкой и термометром, вносим серную кислоту и нагревают на водяной бане до 70 0С. Баню удаляем и при постоянном перемешивании постепенно маленькими порциями прибавляем бензойную кислоту и нитрат калия, внимательно следя за температурой, которая не должна превышать. 80 0С. Затем содержимое колбы нагреваем на водяной бане при 85...90 0С до тех пор, пока на поверхности реакционной массы не образуется масляный слой нитробензойной кислоты.

После охлаждения реакционную массу выливаем в холодную воду, выпавшую в осадок м-нитробензойную кислоту отфильтровываем, промываем сначала холодной водой, а потом несколько раз горячей. Очищаем по методике второго способа.

4. Экспериментальная часть

Синтез м-Нитробензойной кислоты.

4.1 Реагенты и оборудование

Реагенты: бензойная кислота, серная кислота (ρ=1,84г/см3),нитрат калия, этиловый спирт,

ацетон;

Оборудование:

4.2Методика эксперимента

В трехгорлую колбу, снабженную механической мешалкой и термометром, вносим 26мл серной кислоты и нагреваем на водяной бане до 70 0С. Баню удаляем и при постоянном перемешивании постепенно прибавляем смесь 10г бензойной кислоты и 20г нитрата калия, следя за температурой, которая не должна превышать. 80 0С. Затем содержимое колбы нагреваем на водяной бане при 85...90 0С до тех пор, пока на поверхности реакционной массы не образуется масляный слой нитробензойной кислоты. После охлаждения реакционную массу выливаем в холодную воду, выпавшую в осадок м-нитробензойную кислоту отфильтровываем, промываем сначала холодной водой, а потом несколько раз горячей.

Полученный осадок перекристаллизовываем сначала из этилового спирта, а затем из ацетона. В результате получаем белый кристаллический порошок с Тпл=141-1420С. Литературная Тпл=140-1410С. Выход 6,14г (45,2% от теоретического).


5.Выводы

Мною были изучены физические и химические свойства ароматических карбоновых кислот, их получение и применение. Проведена работа поиска и анализа необходимой литературы для получения м-нитробензойной кислоты. В результате был получен искомый продукт с достаточно высоким выходом и степенью чистоты. Вещество растворяется в этиловом спирте, ацетоне.


6.Библиография

Книги

1 Земцова М.Н. Методические указания к выполнению курсовой работы по

органической химии.

2. Химические реактивы и препараты Госхимиздат 1953, Стр. 241-242.

3. Карякин Ю.В., Ангелов И.И. Чистые химические вещества Изд. 4-е, пер. и доп. М.: Химия 1974, Стр. 121-122.

4. «Краткая химическая энциклопедия» Изд. Советская энциклопедия, Т.4 М. 1965 Стр. 817-826.

5. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия: Учебник для вузов. – СПб: «Иван Фёдоров», 2002, Стр. 421-427.

6. Гитис С.С., Глаз А.И., Иванов А.В.Практикум по органической химии: -М.: Высш шк., 1991. - 303.: ил.

7. Шабаров Ю.С. Органическая химия: Учебник для вузов в 2-х кн. – М.: Химия, 1996.

Стр. 558-561, 626-629.

Сайты

1. http://merlin.com.ua/chem/nitro/nitroin.html.

2. http://www.xumuk.ru/encyklopedia/a.html.

3. http://slovari.yandex.ru/dict/brokminor.