Смекни!
smekni.com

Производство кальцинированной соды (стр. 9 из 10)

Технологическая схема процесса кальцинации

Рис. 11. Схема отделения кальцинации:

1- паровой конденсатор; 2- питающий смеситель; 3.15 – ячейковые питатели; 4,10 – ленточные транспортеры; 5 – вибропитатель;6-течка-бункер; 7-плужковый сбрасыватель; 8,9,14,16-транспортеры; 11-циклон; 12-коллектор газа кальцинации; 13-сепаратор;17-сборник конденсата; 18-центробежные насосы; 19-сборник слабой жидкости; 20-холодильник газа кальцинации;21-редукционная охладительная установка (РОУ); 22-промыватель газа кальцинации;23-сборник промывной жидкости.

Отмытый па фильтрах влажный гидрокарбонат натрия с общего ленточного транспортера 10 сплужковым сбрасывателем 7 подается в бункер 6 вибропитателя 5, откуда вибропитателем и ленточным транспортером 4 через ячейковый питатель 3 подается в смеситель 2. В смеситель же поступает ретурная сода и сода, отделяемая от газов кальцинации в циклоне 11.

Подготовленную в смесителе трону направляют в межтрубное пространство барабана кальцинатора 1. В результате тепловой обработки троны получают кальцинированную соду и газы кальцинации. Кальцинированная сода через ячейковый питатель 15 выводится из кальцинатора и поступает па систему транспорте­ров 8, 9, 16. С наклонного транспортера 8 через питатель произ­водится отбор соды в смеситель. Остальная сода транспорте­рами 9, 14 подается на склад.

Газы кальцинации удаляются из кальцинатора через сме­ситель 2, в котором с помощью компрессора создается вакуум. По пути к компрессору газы проходят сухую очистку в циклонах 11и мокрую — в цеховом коллекторе газа кальцинации 12 и промывателе 22. Перед промывателем газы кальцинации охлажда­ются в холодильнике 20.

На орошение в коллектор газа кальцинации подают так назы­ваемую слабую жидкость, образующуюся при конденсации водя­ных паров в холодильнике газов кальцинации. Эта жидкость, соприкасаясь с газом, поглощает частично аммиак и содовую пыль, стекая после этого в сборник 19.

В холодильнике 20 газ проходит сверху вниз по межтрубному пространству, а втрубках противотоком движется охлаждающая вода. Для предупреждения закристаллизовывання трубок холо­дильника и лучшей промывки газа от содовой пыли межтрубное пространство орошается слабой жидкостью. В промывателе газ орошается водой, при этом он дополнительно охлаждается и пол­ностью отмывается от соды и аммиака.

Для обогрева кальцинатора подают водяной пар высокого давления. Перед подачей в кальцинатор он проходит редукцион­ную охладительную установку (РОУ), где его температура сни­жается до 270°С, а давление — до 3 МПа. В трубках кальци­натора пар конденсируется, отдавая тепло кальцинируемому материалу. Конденсат из кальцинатора выводится в сборник конденсата 17 и далее в расширители, где преобразуется в пар низкого давления.

Технологическая схема отделения кальцинации соды при использовании содовых печей с ретурным питанием аналогична рассмотренной. При использовании печей с безретурным питанием влажный гидрокарбонат натрия подается в барабан печи специальным забрасывателем. Смешение его с содой происходит внутри печи, поэтому из технологической схемы исключается смеситель, и упрощается транспортирование соды.

Содержание Na2CO3 и примесей в соде зависит от состава исходного гидрокарбоната натрия и температуры процесса; пос­ледняя определяется обычно температурой выгружаемой соды.

Температурный режим в печах обусловлен как условиями проведения процесса, так и продолжительностью термообработки материала вэтих аппаратах. При коэффициенте заполнения барабана 0,3 пребывание материала в содовой ретурной печи составляет около часа, в паровом кальцинаторе — 20—25 мин. Повышение температуры кальцинации в безретурных печах обусловлено, очевидно, комкообразованием при смешении влажного гидрокарбоната натрия с содой. В этих условиях повышение температуры необходимо для завершения процесса кальцинации во всей массе крупных гранул.

Переработка вторичных материальных ресурсов производства соды аммиачным способом

Из технологического цикла производства кальцинированной соды аммиачным способом выводятся дистиллерная суспензия, которую можно разделить на осветленную жидкость и твердый шлам; твердые шламы после стадии рассолоочистки; газообраз­ные вещества.

Если газовые выбросы содержат вещества в пределах пре­дельно допустимых норм, их выводят в атмосферу. Однако ос­ветленную дистиллерную жидкость и твердые шламы необхо­димо перерабатывать в продукты, полезные для хозяйственной деятельности человека. В связи с этим осветленную дистиллер­ную жидкость и шламы следует рассматривать не как отходы содового производства, а как вторичные материальные ресурсы (BMP).

В литературе широкое распространение получили термины «безотходная» и «малоотходная» технология получения того или иного продукта.

При создании малоотходной, или экологически рациональной, технологии стремятся обеспечить потребность в данном продукте наиболее полным использованием природных ресурсов (материальных и энергетических), т. е. предусматривается организация переработки вторичных материальных ресурсов и исключение вредных выбросов в атмосферу и водоемы, а также максимальное сокращение потерь тепла в окружающую среду.

К настоящему времени определились следующие основные направления в создании экологически рациональных технологических процессов:

1)разработка технологических систем и водооборотных циклов с выводом жидких отходов и выбросом вредных газов, допускаемых пределах для данного региона;

2)переработка вторичных материальных ресурсов (BMP) в полезные продукты;

3)снижение потерь тепла в окружающую среду за счет утилизации вторичных энергоресурсов (ВЭР);

4)создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов

Малоотходный комплекс производства кальцинированной соды имеет две системы водооборота, потребляющие около 18,0 м3 свежей воды на производство 1 т соды, около 2 м3 воды на стадию фильтрации шлама из дистиллерной суспензии, а кроме того, примерно 18 м3 расходуется на другие технологи­ческие нужды (всего 38 м3 на 1 т соды).

Потребление свежей воды может быть сокращено за счет следующего:

а) применения шламов дистилляции с концентрацией хлорид - ионов 8% (т. е. без промывки на стадии фильтрации) для по­лучения полезных продуктов. В этом случае на гашение извести будут направлены слабоминерализованные стоки, а не промыв­ные воды фильтрации шлама (потребление воды сокращается на 2,0 м3/т соды):

б)ликвидации стока, выводимого из водооборотной системы производства соды па рассолопромысел для растворения соли, и выведение стока из водооборотной системы хлорида кальция для специальной очистки. В этом случае потребление воды сок­ращается примерно па 9,0 м3/т соды;

в)очистки от взвешенных веществ, оксида и диоксида угле­рода слабоминерализованного стока после известкового цеха; сток может далее направляться на повторное использование; вэтом случае потребление воды сокращается примерно на 8,5 м3/т соды;

г) использования условно чистого конденсата в водооборот­ной системе хлорида кальция с экономией воды около 6 м3/т соды.

После завершения выполняемых сейчас исследовательских работ можно ожидать снижения потребления свежей воды при­мерно до 10 мэ на 1 т соды с созданием предпосылок реализа­ции бессточной схемы производства. Последнее предполагает использование для подпитки оборотной системы водоснабжения поверхностных сточных вод (ливневые и талые воды), объем которых зависит от расположения предприятия, климатических условий и занимаемой площади; в среднем этот объем со­ставляет 0,3—0,6 м3/т соды.

Производство хлорида кальция

При создании малоотходного комплекса производства соды предусматривается внедрение высокоэффективной технологии переработки осветленной дистеллерной жидкости, которая мо­жет либо перерабатываться с получением хлорида кальция, либо после соответствующей подготовки закачиваться в нефтя­ные скважины.

Дистиллерная жидкость представляет собой водный раствор минеральных солей, основными компонентами которого являются хлорид кальция (10—14 %) и хлорид натрия {5—7%). Описываемый ниже способ получения хлорида каль­ция с одновременным выделением хлорида натрия основан на концентрировании водного раствора этих солей.

Применение получаемого хлорида кальция в народном хозяйстве основано на его высокой гигроскопичности, т. е. способ­ности поглощать из воздуха значительные количества влаги и легко растворяться в воде; пониженной по сравнению с водой температуре замерзания и повышенной температуре кипения концентрированных растворов.

Основными потребителями хлорида кальция являются хими­ческая промышленность (производство синтетического каучука, флотационные процессы и др.), холодильная техника, строи­тельство (увеличивает скорость схватывания бетона), цветная металлургия (изготовление кальцийсодержащих сплавов бабби­тов), обработка руд для предотвращения смерзания, текстильная промышленность и другие отрасли народного хозяйства.

Основным потребителем попутно получаемого хлорида нат­рия является сельское хозяйство (приготовление комбикормов и кормосмесей), иногда NaCl возвращают в голову процесса для получения соды.

Закачка дистеллерной жидкости в нефтяные скважины

Второй вариант утилизации дистиллерной жидкости — ис­пользование ее после специальной подготовки для закачки в нефтяные скважины. Если производство соды расположено в районе добычи нефти, то этот вариант обладает следующими преимуществами: