Смекни!
smekni.com

Производство кальцинированной соды (стр. 7 из 10)

Свежий рассол, прежде всего, используют для поглощения аммиака из выхлопных газов. Около 75-80% рассола поступает из напорного бака 3 в промыватель воздуха фильтров (ПВФЛ) 4, где поглощается аммиак из воздуха, проходящего через фильтрующую ткань вакуум-фильтров и содержащего примерно 0,5-1% NH3. После ПВФЛ рассол идет во второй промыватель газа колонн (ПГКЛ-2) 7, где поглощается аммиак из отходящих газов отделения карбонизации, содержащих до 10% NH3. Остальные 20-25% свежего очищенного рассола из напорного бака 3 поступают в промыватель газа абсорбции (ПГАБ) 1, где поглощается аммиак из отходящих газов отделения абсорбции, содержащих до 5% NH3. Попутно поглощается некоторое количество углекислоты, содержащейся в выхлопных газах. Газ из ПВФЛ поступает на вакуум-насос 5, создающий разрежение на вакуум-фильтрах, и выбрасывается в атмосфер. Газ из ПГАБ также поступает на вакуум-насос 2. Он содержит не менее 75% СО2, поэтому вакуум-насос передает его на смешение с углекислым газом содовых печей и затем на-карбонизацию. Выхлопные газы из ПГКЛ-2выбрасывают в атмосферу.

Рис.8. Типовая технологическая схема отделения абсорбции:

1-промыватель газа абсорбции;

2,5-вакуум-насосы;

3-напорный бак;

4-промыватель воздуха фильтров;

6-холодильник газа дистилляции;

7-второй промыватель газа колонн; 8-сепаратор-брызгоуловитель;

9 - сборник амминизированного рассола; 1

0, 12-оросительные холодильники;

11-постамент (резервуар); 13-второй абсорбер;

14-первый абсорбер

Рассол после промывки выхлопных газов из ПГКЛ-2 и ПГАБ поступает на основную операцию — поглощение аммиака из газа дистилляции, осуществ-ляемое в две сту­пени — в первом абсорбере (АБ-1) 14 иво втором абсорбере (АБ-2) 13. Две ступени абсорбции вызываются не­обходимостью в промежуточном охлаждении рассола, нагревающегося от растворения и взаимодействия NH3 и СО2 и от конденсации водяного пара, поступающего с газом дистилляции, После первого абсорбера рассол, нагретый до температуры 60— 65° С, охлаждают до 28-32° С в оросительном холодильнике 12, после чего он по­ступает во второй абсорбер, где также нагревается при­мерно до 65° С и поэтому прежде, чем поступить в сбор­ник аммонизированного рассола (САР) 9, вторично охлаждается в оросительном холодильнике 10. Чтобы обеспечить самотек рассола на оросительный холодиль­ник, второй абсорбер и стоящие на нем аппараты распо­ложены на постаменте — резервуаре 11.

Газ из отделения дистилляции сначала охлаждается и осушается в холодильнике газа дистилляции (ХГДС) 6 охлаждающей водой и затем, пройдя сепаратор - брызгоуловитель 8, противотоком к рассолу проходит последо­вательно второй и первый абсорберы, где аммиак погло­щается почти целиком. Вместе с аммиаком из газа поглощается большая часть углекислоты. Непоглотившиеся газы идут в ПГАБ (1). При охлаждении газа дис­тилляции в ХГДС водяные пары конденсируются, обра­зуя конденсат, содержащий до 150—200 н. д. аммиака и углекислоту. Аммиак из таких жидкостей, называемых «слабыми», регенерируют на отдельной установке. Полу­чаемый при этом газ, содержащий NН3, CO2 и Н2О и охлажденный до 58—60° С, поступает обычно в первый абсорбер.

Карбонизация аммонизированного рассола

Процесс карбонизации (насыщения аммонизированного рас­сола диоксидом углерода), в результате которого образуется гидрокарбонат натрия, является основным процессом содового производства. В отделении карбонизации получают заданное количество содержащей гидрокарбонат натрия суспензии в виде непрерывного материального потока, передаваемого в отделение.

Качество суспензии определяется качеством содержащегося в ней продукта— гидрокарбоната натрия. Очень часто о каче­стве гидрокарбоната натрия судят по его фракционному составу. Определяющей оценкой качества суспензии является содержание остаточной влаги в гидрокарбонате натрия, полученном фильтрацией этой суспензии в стандартных условиях. Оценку работы карбонизационной колонны можно дать, используя безразмерный технический критерий оптимальности:

Θ = υс хссвяз(4.2-0.lωс)

υс –расход суспензии, выходящей из карбонизационной колонны, м3/с;

хссвяз – концентрация связанного аммиака в осветленной части суспензии, н.д.;

ωс – содержание остаточной влаги в гидрокарбонате натрия, %.

Чем выше производительность по гидрокарбонатy натрия и меньше остаточная влага впродукте, тем лучше работает карбонизационная колонна, т. е. необходимо стремиться к увеличению абсолютного значения критерия оп­тимальности.

В результате процесса карбонизации из раствора в осадок выпадает гидрокарбонат натрия, образующийся по реакции

NaCl + NH3 + СО2 + Н2О ↔ NaHCO3 + NH4C1.

Эта реакция характеризует только конечный результат вза­имодействия хлорида натрия и гидрокарбоната аммония. В дей­ствительности процесс карбонизации протекает гораздо слож­нее, и его механизм до настоящего времени окончательно не выяснен.

Процесс карбонизации ведут ступенчато. Вначале аммонизи­рованный рассол обрабатывают газом известковых печей в колонне предварительной карбонизации (КЛИК), затем в пер­вом промывателе газа колонн (ПГКЛ-1)— газами, отходящими из осадительных колонн, и, наконец, — в осадительных колоннах (КЛ),в нижнюю часть которых вводят смешанный газ (65—75 % СО2), а в среднюю часть —газ известково-обжигательных пе­чей.

На первой стадии карбонизации большая часть диоксида углерода связывается в карбамат аммония

2NH3 + СО3 → NH2COONH4,

который затем гидролизуется

NH2COONH4 + Н2О ↔ NH4HCO3+NH3,

с образованием пересыщенного по НСОз-раствора. Затем из пересыщенного раствора кристал­лизуется гидрокарбонат натрия, образующийся по реакции

NH4HCO3+ NaCl↔NaHCO3 + NH4Cl.

Процесс насыщения аммонизированного рассола диоксидом углерода является экзотермическим. Выделяющееся тепло реакции в конечной стадии процесса необходимо отвести, чтобы обеспечить необходимые степени карбонизации раствора и утилизации (использования) натрия.

Температурный режим карбонизаци­онной колонны значительно влияет на процесс образования кри­сталлов гидрокарбоната натрия. Для получения крупных кри­сталлов гидрокарбоната натрия правильной формы, которые не забивают фильтрующую поверхность вакуум-фильтров и мало­растворимы в процессе фильтрации, необходимо поддерживать сравнительно высокую температуру (60—72 °С) в зоне образова­ния и в начальный период роста кристаллов. В процессе даль­нейшего роста кристаллов температура уже не оказывает суще­ственного влияния на их размер.

Процесс кристаллизации начинается с образования зароды­шей в виде очень мелких кристалликов гидрокарбоната натрия, из которых при поддержании нормального технологического ре­жима образуются кристаллы в форме коротких цилиндров — «бочки». При ухудшении процесса кристаллизации образуются кристаллы, имеющие форму длинных цилиндров и склонные к образованию сростков в виде «снопов» (друзы). В этом слу­чае выделяется большое количество мелочи в виде игольчатых кристаллов и бесформенных обломков. Такие кристаллы при фильтрации уплотняются и удерживают в образовавшихся мелких ячейках много влаги, т. е. увеличивается содержание остаточной влаги в гидрокарбонате натрия.

Технологическая схема отделения карбонизации

Аммонизированный рассол из сборника аммонизированного рассола (САР) поступает в колонну предварительной карбони­зации (КЛПК), в которую подается также газ известковых пе­чей, содержащий 32—36 % (об.) СО2 при обжиге мела и 38—40% (об.) СО2 при обжиге известняка. Из КЛПК жидкость при температуре 42-46°С направляется в первый промыватель газа колонн (ПГКЛ-1). Сюда же поступает газ из КЛПК и осадительных колонн. В ПГКЛ-1улавливается аммиак, отдутый карбонизующим газом из КЛПК.

За время прохождения жидкости через ПГКЛ-1 ее темпера­тура повышается на 5—8°С. Для дополнительного охлаждения жидкости после ПГКЛ-1 предусматривается теплообменник, откуда жидкость поступает в осадительную карбонизационную колонну. В нижнюю часть колонны подается смешанный газ (первый ввод), содержащий диоксид углерода 70-80% (об.), а в среднюю часть — газ известковых печей (второй ввод). Газ из осадителной карбонизационной колонны направляется в ПГКЛ-1, а суспензия—в отделение фильтрации.

Карбонизационные колонны работают сериями, чтобы обес­печить непрерывность потока суспензии, направляемого в от­деление фильтрации. Наибольшее распространение получили се­рии, состоящие из четырех карбонизационных колонн, из кото­рых три работают в качестве осадительных, а одна — колонна предварительной карбонизации.

Аппаратура отделения карбонизации

Карбонизационная колонна КЛ. Она яв­ляется основным аппа­ратом отделения карбо­низации. КЛ представ­ляет собой цилиндрическую пусто­телую колонну диамет­ром до 3 и высотой до 27 м, состоящую из ря­да чугунных бочек или царг. Сверху через штуцер 5 и колонну по­ступает из ПГКЛ-1 подлежащий карбони­зации раствор, а снизу через штуцер 2 и в се­редине через штуцер 9— углекислый газ. При работе колонна за­полнена раствором до определенного постоян­ного уровня.

Рис.9. Карбонизационная колонна (диаметром 2680 мм):

1-бочка-база; 2-штуцер для входа газа;3-холодильная бочка;4-абсорбционная бочка;5-штуцеры для входа жидкости;6-сепарационные бочкм;7-штуцеры для выхода газа;8-барботажная колонна;9-штуцер для входа газа;10-штуцер для выхода суспензии.