Смекни!
smekni.com

Производство бета-каротина (стр. 2 из 6)

В то же время, некоторые витамины получают с помощью экстракции и очистки культуральной жидкости или биомассы микроорганизмов. Наряду с использованием непосредственно дрожжевой биомассы как источника витаминов в виде дрожжевых гидролизатов и пивных дрожжей, некоторые дрожжи используются для микробиологического производства чистых витаминов.

Витамин D2, кальциферол

Использование дрожжей для производства чистых витаминов началось в 1930-х годах с получения витамина D. С использованием специальных рас Saccharomyces cerevisiae получают эргостерол, который после облучения ультрафиолетом модифицируется в витамин D2 (кальциферол).

Существуют штаммы сахаромицетов, обладающие способностью к гиперсинтезу витамина B2 (рибофлавина), которые могут быть использованы для получения этого витамина.

Из базидиомицетовых дрожжей, обладающих способностью к интенсивному синтезу каротиноидов, получают препараты β-каротина, являющегося предшественником витамина A, и астаксантина.


Питьевые дрожжи

Дрожжевой осадок, остающийся после сбраживания пивного сусла, издавна используют для получения различных полезных веществ, в частности дрожжевых гидролизатов и автолизатов. Гидролизаты дрожжей получают, нагревая дрожжевую биомассу при 100°C в кислой среде. Большая часть белков при этом гидролизуется до аминокислот. Затем препарат нейтрализуют и концентрируют в виде густой пасты или высушивают. При получении дрожжевых автолизатов разрушение клеточных компонентов происходит под действием ферментов самой дрожжевой клетки. Этот процесс протекает в обычных условиях в или при небольшом нагревании дрожжевого осадка без питательных веществ до 50°C и обычно продолжается в течение 1-2 сут. За это время около половины всех белков в дрожжевых клетках расщепляется до аминокислот.

Дрожжевые гидролизаты широко применяются в качестве источника витаминов и аминокислот в медицине, в микробиологии при составлении питательных сред. Дрожжевые гидролизаты и автолизаты обладают способностью придавать пищевым продуктам привкус мяса, или усиливать такой вкус, поэтому они широко используются в пищевой промышленности для приготовления различных приправ, в качестве вкусовых добавок в готовые продукты (например, в картофельные чипсы).

Большой популярностью пользуются пивные (питьевые) дрожжи, приготовляемые на основе частично гидролизованной дрожжевой биомассы. Они используются в качестве источника витаминов (в первую очередь В1 и В2, а также РР, В3, В4, В6, Н), незаменимых аминокислот и жирных кислот и широко применяются в медицине, ветеринарии, косметологии, диетологии.

Красные дрожжи

Многие дрожжи синтезируют большое количество каротиноидов, придающих их колониям красную, розовую, оранжевую или желтую окраску. Способность к образованию каротиноидов и формирование окрашенных колоний встречается только среди базидиомицетовых дрожжей, то есть относится к признакам аффинитета. Наиболее характерно образование каротиноидов для родов Rhodosporidium, Cystofilobasidium, Sporidiobolus, и их анаморф Rhodotorula, Cryptococcus, Sporobolomyces. К наиболее распространенным каротиноидам относится β-каротин.

β-Каротин

Это широко распространенное соединение, встречающиеся также во многих растениях и грибах. β-Каротин является предшественником витамина A и его промышленное получение представляет интерес для медицины и некоторых других облестей. Разработаны и применяются биотехнологические процессы получения β-каротина с использованием красных дрожжей, например Rhodotorula glutinis.

У базидиомицетовых дрожжей встречаются и другие виды каротиноидов. Например, красные дрожжи Phaffia rhodozyma образуют каротиноид астаксантин.

Астаксантин

Астаксантин - широко распространенный в природе каротиноидный пигмент ярко-красной окраски. В отличие от β-каротина имеет два дополнительных атома кислорода на каждом из колец. Впервые был выделен из омаров в 1938 году, сейчас обнаружен в тканях многих растений и животных. Особенно в большом количестве содержится в тканях креветок, крабов, лососевых рыб, придавая им красный цвет.

Астаксантин является одним из наиболее активных антиоксидантов и используется в медицине для лечения ряда заболеваний. Препараты астаксантина широко используются в качестве кормовой добавки в рыбоводстве, особенно при выращивании лососей, и аквариумоводстве.

Основным источником для получения астаксантина служит водоросль Haematococcus инцистированные клетки которой содержат до 4% каротиноида. Астаксантин был обнаружен также в дрожжах Phaffia rhodozyma (телеоморфа Xanthophyllomyces dendrorhous). Генетически модифицированные штаммы Phaffia содержат до 1-2% астаксантина и могут также использоваться для промышленного получения этого каротиноида.

Клетки овальные или круглые, иногда удлиненные. Почкование истинное, многостороннее. Может формироваться примитивный псевдомицелий, но истинного мицелия не образуют. Диплоидизация происходит в результате слияния двух гаплоидных клеток (гологамия). Вегетативно размножаются в основном диплоидные клетки. Аски образуются преимущественно из вегетативных диплоидных клеток. Аски круглые или овальные, при созревании спор не вскрываются. Аскоспоры круглые или слабоовальные, бесцветные, гладкие, 1-4 в аске. Все виды активно сбраживают сахара. Дрожжи этого рода с давних времен распространены в кустарном виноделии и широко используются в разных отраслях бродильной промышленности, в связи с чем они более всех других дрожжей изучены в разных аспектах. Их систематика, однако, многократно пересматривалась. Центральный вид - Saccharomyces cerevisiae известен в десятках синонимов, которые в настоящее время рассматриваются как производственные расы, но не самостоятельные виды.

Потребность дрожжей в витаминах

Одна из характеристик, используемых для таксономического описания дрожжей - потребность в витаминах. Более 80% всех известных видов дрожжей не способны к росту на среде, не содержащей витамины (ауксотрофны). Наибольшее число видов (около 65%) нуждается в биотине и тиамине. Из других витаминов в таксономии дрожжей используется определение потребности в рибофлавине, пантотеновой кислоте, пиридоксине, инозите и никотиновой кислоте.

Биотин, витамин H (B7)
Тиаминпирофосфат, витамин B1
Рибофлавин, витамин B2
Пантотеновая кислота, витамин B5
Пиридоксин, витамин B6
мио-Инозит, витамин B8
Никотиновая кислота, Ниацин, витамин PP

Для определения потребности исследуемого штамма в том или ином витамине его выращивают на стандартной среде, содержащей определенный витамин, и сравнивают с ростом на этой же среде, не содержащей витаминов. В случае, если добавление витамина приводит к существенному увеличению роста, делают вывод о ауксотрофности штамма по этому витамину. Тесты на способность к росту на безвитаминной среде и определение потребности в конкретных витаминах входят в стандартное описание вида дрожжей.

Зависимость скорости роста ауксотрофных штаммов дрожжей от содержания определенных витаминов была использована для разработки методов определения концентрации витаминов в различных средах по измерению прироста дрожжевой биомассы.

Стандартные среды для физиологических тестов

Разделение дрожжей на виды базируется на многих характеристиках, среди которых важное место занимают как морфологические, так и физиологические признаки - способность к росту на различных органических соединениях в качестве единственного источника углерода и энергии, способность к усвоению различных источниках азота, потребность в различных витаминах и т.п. Все эти характеристики сильно зависят от состава среды и условий культивирования, поэтому в систематике дрожжей разработаны и применяются среды стандартного состава. Полный набор таких сред выпускается в готовом виде фирмой Difco (Difco Laboratories, в 1997 г. вошедшая в состав BD Diagnostic Systems). Среди этих сред наиболее популярны: морфологический агар - для описания макро- и микроморфологических характеристик дрожжевой культуры, азотная основа - для определения способностей к росту на различных источниках углерода, углеродная основа - для определения способности к усвоению различных источников азота, базвитаминная среда - для определения потребностей в витаминах.

Состав этих сред приведен в таблице:

Ингредиенты (на 1 л воды) Морфологи-ческий агар Азотная основа Углеродная основа Среда без витаминов
Источники углерода и азота, г
Глюкоза 10 10 10
(NH4)2SO4 3.5 5 5
Аспарагин 1.5
Макроэлементы, г
КH2РO4 0.85 0.85 0.85 0.85
К2НРО4 0.15 0.15 0.15 0.15
MgSO4 0.5 0.5 0.5 0.5
NaCl 0.1 0.1 0.1 0.1
СаСl2 0.1 0.1 0.1 0.1
Аминокислоты, мг
L-Гистидин НСl 10 10 1 10
DL-Метионин 20 20 2 20
DL-Триптофан 30 20 2 20
Витамины. мкг
Пантотенат кальция 2000 2000 2000
Фолиевая кислота 2 2 2
Инозит 10000 10000 10000
Никотиновая кислота 400 400 400
Парааминобензойная кислота 200 200 200
Пиридоксин НСl 400 400 400
Рибофлавин 200 200 200
Тиамин НСl 400 400 400
Биотин 20 20 20
Микроэлементы, мкг
Н3РО3 500 500 500 500
CuSO4 40 40 40 40
KJ 100 100 100 100
FeCl3 200 200 200 200
MnSO4 400 400 400 400
Na2MoO4 200 200 200 200
ZnSO4 400 400 400 400
Промытый агар, г 18
Количество сухой готовой среды фирмы «Difco» на 1 л, г 35 6.7 11.7 16.7

ПРОИЗВОДСТВО КРИСТАЛЛИЧЕСКОГО β-КАРОТИНА ИЗ