Смекни!
smekni.com

Классификация электродов (стр. 1 из 2)

Электрод представляет собой систему, в простейшем случае состоящую из двух фаз, из которых твердая обладает электронной, а другая - жидкая - ионной проводимостью. Твердая фаза с электронной проводимостью считается проводником I рода, а жидкая фаза с ионной проводимостью - II рода. При соприкосновении этих двух проводников происходит образование двойного электрического слоя (ДЭС). Он может быть результатом обмена ионами между твердой и жидкой фазами, или результатом специфической адсорбции катионов или анионов на поверхности твердой фазы при погружении ее в воду или раствор.

При ионном механизме образования ДЭС, например в случае когда химический потенциал атомов на поверхности металла (твердой фазы) больше химического потенциала ионов в растворе, то атомы с поверхности металла будут переходить в раствор в виде катионов: Me  Mez+ + ze-. Освободившиеся электроны при этом заряжают поверхность твердой фазы отрицательно и за счет этого притягивают к поверхности положительно заряженные ионы раствора. В результате на границе раздела фаз образуются два противоположно заряженных слоя, являющихся как бы обкладками своеобразного конденсатора. Для дальнейшего перехода заряженных частиц из одной фазы в другую им необходимо совершить работу, равную разности потенциалов обкладок этого конденсатора. В случае, если химический потенциал атомов на поверхности твердой фазы меньше химического потенциала ионов в растворе, то катионы из раствора переходят на поверхность твердой фазы, заряжая ее положительно: Mez++ze-Me. Как в первом, так и во втором случае указанные процессы протекают не бесконечно, а до установления динамического равновесия, которое можно изобразить обратимым редоксипереходом типа Мe -

 Мez+ или в общем случае Ох +
 Redz+.

Процессы, при которых отдача или присоединение электронов происходит на электродах, называются электродными.

Нернстом была получена формула, связывающая разность внутренних потенциалов ДЭС с активностями (концентрациями) частиц, участвующих в обратимом редоксипереходе:

,

где  (Me) - потенциал заряженного слоя твердой фазы;

 (раствор) - потенциал прилегающего к твердой фазе слоя раствора;

0 - константа, равная разности  (Me) -  (р-р), при

(Ох) =
(Red) = 1 моль/л;

R - универсальная газовая постоянная (8,31 Дж/К моль);

T - температура, К;

F - число Фарадея (96 488 Кл/моль);

Z - число электронов, участвующих в редоксипереходе;

(Ох) и
(Red) - активности окисленной (Ох) и восстановленной (Red) форм вещества в редоксипереходе, моль/л.

Установить внутренние потенциалы отдельных фаз  (Me) и  (р - р), к сожалению, экспериментально нельзя. Любая попытка подключить раствор с помощью провода к измерительному устройству, вызывает появление новой поверхности соприкосновения фаз металл-раствор, то есть возникновение нового электрода со своей разностью потенциалов, влияющей на измеряемую.

Однако можно измерить разность  (Me) -  (р - р) с помощью гальванического элемента. Гальваническим элементом называется система, составленная из двух разных электродов, обладающая способностью самопроизвольно преобразовывать химическую энергию протекающей в нем окислительно-восстановительной реакции в электрическую энергию. Электроды, из которых составлен гальванический элемент, называются полуэлементами. Протекающая в гальваническом элементе окислительно-восстановительная реакция пространственно разделена. Полуреакция окисления протекает на полуэлементе, называемом анодом (отрицательно заряженном электроде), а полуреакция восстановления - на катоде.

Электродвижущая сила (ЭДС) гальванического элемента алгебраически складывается из разностей внутренних потенциалов составляющих его электродов. Поэтому, если в качестве одного полуэлемента взять электрод с известной величиной разности внутренних потенциалов  (Me) -  (раствор), то по измеренной величине ЭДС можно вычислить искомую разность потенциалов исследуемого электрода.

Для этой цели принято использовать стандартный (нормальный) водородный электрод (см. рис. 1). Он состоит из платиновой пластинки или проволоки, покрытой платиновой чернью (мелкодисперсной платиной), погруженной в раствор кислоты с

=1моль/л, давление водорода над которым 0,1 МПа (1 атм). Под каталитическим влиянием платиновой черни в электроде осуществляется обратимый редоксипереход
. Разность внутренних потенциалов для водородного электрода в соответствии с формулой Нернста равна:

Рис. 1. Схема стандартного водородного электрода.

;

так как [H+] = 1моль/л, а р(H2) = 1атм, то

(Me) - (р - р) =

Ионы, от концентрации которых непосредственно зависит потенциал электрода, называют потенциалоопределяющими для данного электрода.

По природе потенциалоопределяющих ионов различают электроды I рода, II рода, редоксэлектроды и мембранные электроды.

К электродам I рода относятся металлические, амальгамные и газовые. Для них потенциалоопределяющими ионами являются катионы. Они обратимы относительно катионов.

Металлические электроды состоят из металла, погруженного в раствор, содержащий его ионы. Их можно представить в виде схемы: MeZ+/Me, например Ag+/Ag. Им отвечает обратимый редоксипереход: MeZ+ +

 Me.

Их электродный потенциал согласно формуле Нернста, с учетом того, что активность твердой фазы при данной температуре равна единице, можно записать так:

.

Амальгамные электроды состоят из амальгамы металла, находящейся в контакте с раствором, содержащим ионы этого металла: МеZ+/Ме(Hg);

МеZ++

 Ме, например Сd2+/Сd(Hg);

.

Газовые электроды состоят из инертного металла (обычно платины), контактирующего одновременно с газом и раствором, содержащим ионы этого газообразного вещества. Например, водородный электрод.

Электроды I рода обычно используют в ЭМА в качестве индикаторных, т.е. электродов, чей потенциал зависит от концентрации определенных ионов. Эту зависимость называют электродной функцией.

Электроды II рода состоят из металла, покрытого слоем его малорастворимого соединения и погруженного в раствор растворимой соли, содержащей тот же анион, что и малорастворимое соединение. Для них потенциоопределяющими ионами являются анионы. Они обратимы относительно анионов.

AZ-/MA,M;

MA +

 M + AZ-;

так как

(MA) =
(M) = 1,

то

.

Электроды II рода широко применяются в электрохимических измерениях в качестве эталонных (электродов сравнения), так как их потенциал устойчив во времени и хорошо воспроизводится, если концентрацию аниона поддерживать постоянной. Наиболее употребительны в качестве электродов сравнения каломельный и хлорсеребряный электроды.

Каломельный электрод состоит из ртути, покрытой пастой, содержащей каломель (Hg2Cl2) и соприкасающейся с раствором KCl:

Сl-/Hg2Cl2, Hg; ½ Hg2Cl2 +

 Hg + Cl-;

E(Cl-(Hg2Cl2, Hg)) = 0,2678 - 0,0257 ln

(Cl-), при 298 К.

Обычно употребляют каломельные электроды с содержанием KCl 0,1М; 1М и насыщенный раствор.

Хлорсеребряный электрод - серебряная пластинка, покрытая AgCl и погруженная в раствор KCl: Cl-/AgCl, Ag

AgCl +

Ag + Cl-;

E(Cl-/AgCl, Ag) = 0,2224 - 0,0257 ln

(Cl-) при 298 К.

При использовании насыщенного раствора потенциал хлорсеребряного электрода при 298 К составляет 0,22 В.

Окислительно-восстановительные (редокс-) электроды состоят из инертного металла (например Pt), погруженного в раствор, содержащий как окисленную (Ох), так и восстановленную (Red) формы вещества: Ох, Red|Pt;

Ох + z

Red;

.

Различают простые (Sn4+; Sn2+) и сложные (MnО4; Mn2+) редокссистемы. Соответственно для олова можно записать

Sn4+; Sn2+| Pt; Sn4++ 2

 Sn2+;

,

а для марганца

MnО4-; Mn2+| Pt; MnО4 - + 8H+ + 5

 Mn2+ + 4H2О;