Смекни!
smekni.com

Катализаторы в нефтепереработке (стр. 2 из 3)

2. Катализ

Ката́лиз (разрушение) — явление изменения скорости химической или биохимической реакции в присутствии веществ, количество и состояние которых в ходе реакции не изменяются (катализаторов). Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций— это каталитические.

Катализа́тор — вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от других реагентов, при реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) повторяется. Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.

Катализ может быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость реакции уменьшается). Для обозначения отрицательного катализа часто используют термин ингибирование. Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный – образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды. Относительно механизма каталитического действия существуют две точки зрения. Процесс может быть ступенчатым или слитным.

2.1 Катализаторы гидрогенизационных процессов.

Катализаторы гидрогенизационных процессов выполняют несколько функций. Обычно различают гидрирующую, расщепляющую (крекирующую) и изомеризующую функции. Первую функцию обеспечивают металлы в основном VIII группы и окислы или сульфиды некоторых металлов VI группы периодической системы. Крекирующая функция обеспечивается носителем окисью алюминия, алюмосиликатами, магнийсиликатами или активированной глиной. Обычно носители выполняют также изомеризующую функцию. Если хотят повыситьактивность крекирующего компонента, прибегают к обработке катализатора галоидами фтором или хлором. Если необходимо усилить гидрирование, увеличивают содержание металла, способствующего гидрированию, или добавляют промоторы, обычно редкоземельные металлы. Следует подчеркнуть, что добавление галоидов способствует усилению не только крекирующей, но и изомеризующей способности. В некоторых случаях обе функции может выполнить одно соединение, например дисульфид вольфрама. Иногда сульфиды и окислы металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации и гидрокрекинга, а также в реакциях насыщения кратных связей в углеводородах. Гидрирующие катализаторы можно разделить на следующие типы. Металлы (платина, палладий, никель) в чистом виде или на носителях, применяемые в реакциях насыщения непредельных и ароматических углеводородов. Они позволяют вести процесс при низких температурах, однако в сырье не должно быть катализаторных ядов.

Окислы и сульфиды металлов (или их сочетания) на кислотных носителях окись алюминия или магния, кизельгур. Они применяются главным образом в реакциях насыщающего гидрирования в присутствии потенциальных катализаторных ядов.

Окислы и сульфиды металлов (или их сочетания) на кислотных носителях алюмосиликате, магнийсиликате, окиси алюминия (кислотной) или активированной глине. Эти катализаторы применяются чаще всего для проведения гидроизомеризации и гидрокрекинга.

Так как сернистые соединения присутствуют практически во всех видах сырья, следует применять катализаторы, стойкие к сере. Такими катализаторами являются сульфиды металлов. В большинстве современных процессов в качестве катализаторов используют кобальт или никель, смешанные с молибденом на пористом носителе (в основном окись алюминия); иногда применяют сульфидный никельвольфрамовый катализатор. Обычно катализаторы выпускаются в окисной форме; при гидрогенизации сернистого сырья окислы кобальта (или никеля) и молибдена полностью или частично переходят в сульфидную форму. Часто после загрузки катализатор «осерняют» предварительно обрабатывают сероводородом или сернистыми соединениями и водородом.

Молибденовые катализаторы, особенно переведенные в сульфидную форму, весьма активны в реакциях гидрирования, протекающих в результате разрыва связей С—S. То же действие оказывает, например, молибден с кобальтом на окиси алюминия; очень важно, что катализатор обладает высокой теплостойкостью это способствует удлинению срока его службы, С другой стороны, активность катализатора гидрокрекинга в отношении разрыва-связей С—С мала, вследствие чего образование низкскипящих продуктов при условиях, требуемых для удаления серы, незначительно.

Катализаторы гидрогенизационных процессов весьма разнообразны, но их можно классифицировать по назначению так: катализаторы гидроочистки нефтяных дистиллятов; катализаторы гидрокрекинга нефтяного сырья от нефти до мазута; катализаторы деалкилирования.

2.2 Задачи катализаторов

В целом же роль и задача катализаторов - повышать селективность протекающих химических реакций, увеличивая выход целевого продукта из единицы сырья.


3. Основы синтеза катализаторов

Катализатор представляет собой обычно весьма сложные агрегаты отдельных кристаллов.

Первоначальный комплекс, образующий при последующей обработке скелет, содержащий активный компонент, должен удовлетворять следующим требованиям: 1) хорошему развитию поверхности на единицу веса и объема, 2) термической стойкости, 3) широкой возможности вариаций состава.

Этим требованиям удовлетворяет группа веществ, называемых в патентной литературе базообменивателями и представляющих собой соли сложных гетерополикислот. Наибольшее распространение получили комплексы, содержащие кремниевую кислоту, называемые цеолитами.

Оптимальный химический состав и образование каталитически активных соединений являются необходимыми, но все же недостаточными условиями для реализации высокой каталитической активности. Кроме того, необходимо создание довольно развитой внутренней поверхности в твердом катализаторе, а также определенной пористой структуры, которая делает поверхность более доступной для реагентов. Такая структура должна обладать достаточной механической прочностью и стабильностью в условиях проведения каталитических процессов в реакторе. Помощь теории в решении проблемы приготовления катализаторов заключается прежде всего в определении оптимальной пористой структуры.

Основным фактором, определяющим каталитические свойства, несомненно, является химический состав. Однако и при сохранении одинаковым химического состава каталитические характеристики в зависимости от способа и условий приготовления могут изменяться в весьма широких пределах, вследствие изменения природы взаимодействия составных частей катализатора, дисперсности, пористой структуры, кристаллохимических изменений и других факторов, существенно влияющих на протекание каталитических реакций.

Оценка каталитических свойств катализатора в отношении определенной реакции характеризуется следующими показателями:

1. Каталитическая активность, определяемая количеством вещества, реагирующим в единице объема катализатора в единицу времени в заданных условиях.

2. Селективность, характеризуемая отношением скорости образования требуемого продукта к общей скорости превращения исходного вещества при определенном составе реакционной смеси и температуре.

3. Устойчивость (термическая, к действию ядов, к длительности работы).

4. Механическая прочность.

5. Гидродинамические характеристики, определяемые размером, формой и плотностью зерен катализатора.

Задача теории приготовления катализаторов заключается в том, чтобы выявить:

1) от каких свойств катализатора, кроме химического состава, зависят эти основные характеристики;

2) каковы оптимальные значения этих свойств или, точнее, оптимальное сочетание значений этих свойств, определяющее высокое качество катализатора для заданной реакции;

3) какими средствами в процессе приготовления катализаторов можно варьировать эти свойства для достижения их оптимальных значений.

В результате многочисленных исследований процесса синтеза катализаторов гидрогенизационных процессов была предложена наиболее оптимальная схема синтеза:


4. Экспериментальная часть

Синтез алюмоникельмолибденового (АНМ) и алюмокобальтмолибденового (АКМ) катализатора гидроочистки проводился согласно выше представленной схеме.

1. Для приготовления нужного катализатора в качестве носителя был выбран Al(OH)3 . В зависимости от условий получения носитель имеет разные свойства. Для нашего эксперимента взяли 250 г гидроксида алюминия. Для начала необходимо провести пептизацию сильной одноосновной кислотой. Взяли 1,5 мл азотной кислоты HNO3, предварительно сделав расчеты (на 100 г Al(OH)3 нужно 0,6 мл кислоты). После внесения кислоты образуются так называемые мицеллы (сгустки Al(OH)3 , окруженные ионами кислоты) и вода. В результате чего снижается вязкость всей массы. Теперь можно проводить модифицирование пористой структуры. В качестве модификатора был выбран триэтиленгликоль (HО-CH2-CH2-O-CH2-CH2-O-CH2-CH2-OH), объемом 62,5 мл (из расчета 25 мл на 100г). Содержимое тщательно перемешивается до однородной белой массы.