Смекни!
smekni.com

Исследования в области синтеза и переработки полиэтилентерефталата и нанокомпозитов на его основе (стр. 3 из 3)

Рис. 4. Установка для проведения ТФПК. 1 - нагревательный элемент; 2 - масляная баня; 3 - реакционные колбы; 4 - контактный термометр; 5 - холодильник; 6 - приемник

На примере поликонденсации олигомеров полютилентерефталата было установлено, что значительное влияние на процесс роста цепи из олигомеров оказываетдисперсность их частиц. С уменьшением размера твердых частиц олигомеров существенно возрастает молекулярная масса образующегося полиэтилентерефталата.

При поликонденсации в твердой фазе возникает своеобразное противоречие: для ускорения процесса следует повышать температуру синтеза, но повышение температуры может привести к слипанию частиц порошка. Поэтому нами были предусмотрены меры по предотвращению слипаемости частиц порошка предполимера: обработка частиц полиэтилентерефталата органическими жидкостями вызывающими их кристаллизацию, после которой частицы не слипаются; интенсивная вибрация для предотвращения слипаемости на ранних стадиях; использование добавок инертных мелкодисперсных порошков (от 0,1 % до 10 % от массы полимера).

Перед ТФПК полученный форполимер измельчают и подвергают предварительной термической обработке при определенной температуре, которая ниже температуры плавления форполимера, в токе инертного газа или в вакууме. Термическую обработку проводят для повышения кристалличности и сокращения времени проведения твердофазной поликонденсации.

Для более эффективного проведения реакции получения форполимера необходимо использовать катализаторы. В качестве катализатора могут быть использованы различные соединения титана, оксид цинка, ацетат цинка и ацетат марганца. Наиболее эффективно используются органические соединения титана: тетрабутилтитан, тетрапропилтитан, тетраэтилтитан, тетраметилтитан и четыреххлористый титан. Катализатор вводится в соотношении 10-100 ч. на 1000 ч. полимера, предпочтительней 30-300 ч. Дополнительно катализатор может быть введен в течение реакции. Когда добавлен катализатор, предварительная термообработка не обязательна.

3) Рециклинг ПЭТ за счет создания на его основе нанокомпозитных материалов с использованием органомодифщированных алюмосиликатов

Процесс формирования слоистосиликатного нанокомпозита протекает через ряд промежуточных стадий [12] (рис. 5). На первой стадии происходит образование тактоида - полимер окружают агломераты органомодифицированного слоистого силиката. На второй стадии происходит проникновение полимера в межслойное пространство слоистого силиката, в результате чего происходит раздвижение слоев силиката. Дальнейшее увеличение расстояния между слоями (третья стадия) приводит к частичному расслоению и дезориентации силикатных слоев. На последней стадии происходит эксфолиация.

В случае образования композита, структура которого преимущественно состоит из тактоидов, основные его характеристики лежат в том же диапазоне, что и у обычных микрокомпозитов. Кроме этого случая можно выделить два других типа структуры композитов. Первый (рис. 5, П) обладает структурой, в которой полимерные цепи интеркалированы в межслоевое пространство слоистого силиката, при этом формируется упорядоченная многослоевая система, собранная из чередующихся полимерных и силикатных слоев. В композитах со структурой второго типа (рис. 5, IV), слои силиката, полностью и однородно диспергированы в полимерной матрице, формируется эксфолиированная структура.

Рис. 5. Схема образования полимерного нанокомпозита

Структуру слоистосиликатных нанокомпозитов определяют методом рентгеноструктурного анализа. Сдвиг характерного для слоистого силиката пика в область малых углов подтверждает получение интеркалированного нанокомпозита, в котором хорошо сохраняется повторяющаяся многослойная структура. Отсутствие характерного пика слоистого силиката - из-за большего расстояния, между слоями или из-за того, что силикатные пластинки разупорядочены, означает формирование эксфолиированного нанокомпозита.

Для подтверждения данных, получаемых рентгеноструктурным анализом, используют растровую и трансмиссионную микроскопии. На самом деле, в слоистосиликатных нанокомпозитах одновременно могут сосуществовать все указанные структуры, это зависит от степени распределения слоистого силиката в полимерной матрице.

Предварительные исследования показали, что нанокомпозитные материалы на основе вторичного ПЭТ и слоистых алюмосиликатов обладают комплексом эксплуатационных характеристик, способных обеспечить их применение в различных областях промышленности. Особенностью таких нанокомпозитов является повышенная огнестойкость и высочайшие по сравнению с чистым ПЭТ барьерные свойства по отношению к кислороду и углекислому газу.


Литература

1. Митрофанов Р.Ю., Чистякова Ю.С., Севодин В.П. // Переработка отходов полиэтилентерефталата. ТБО. - 2006. -№ 6.

2. Джайлз Д., Брукс Д., Сабсай О.Ю. Производство упаковки из ПЭТ. - М: Профессия, 2006. -368 с.

3. British Patent 578,079 (1941);

4. Brunnschweiler, D., in Polyester: 50 Years of Achievement, Brunn-schweiler, D. and Hearle, J. W, S. (Eds), The Textile Institute, Manchester, UK. -1993.-P. 34-37.

5. Whinfield, J. R., Nature, 158, 930 (1946); Whinfield, J. R, Text. Res. J„ 23, 290(1953).

6. Стрельцов E. Война миров в упаковке // Полимеры-деньги. - 2003. -№ 1. http://polvmers-monev.com/iournal/posttng

7. Чубыкин А. Российский рынок ПЭТ-пленок // Флексо Плюс. - 2004. - № 5

8. http://e-plastic.ru/main/articles/rl 1 /рг02

9. http://vvww.ekoresurs.ru

10. Plastics.ru, 08/08/2006.

11. А.И.А. Аид, А.Ю. Беданоков, О.Б. Леднев. // Малый полимерный конгресс. - М., 2005. - С. 57.

12. А.К. Mikitaev, A.Y.Bedanokov, O.B.Lednev, M.A.Mikitaev // Polymers, Polymer Blends, Polymer Composites and Filled Polymers. Synthesis, Properties, Application. Nova Science Publishers. - New York, 2006.