но
используя эти соотношения, из 1.40 и 1.41 получим:
Обозначив
получим
Таким образом, при
y1>x1 ,dt>0 dx1>0
y2<x2 ,dt>0 dx2<0
Обычно говорят, что если фазовый эффект
Перейдем к фазовым эффектам в паровой фазе.
Здесь
Но при приходе (или уходе) из паровой фазы dm молей состава жидкой фазы
Следовательно, из 1.48 и 1.49 окончательно получаем
Следовательно, при
x1< y1, dt>0, dy1<0,
x2> y2,dt>0, dy2>0,
Таким образом, если
Запишем уравнение фазовых эффектов в жидкой фазе.
Так как сумма dx1+dx2=0, следовательно, dx1= -dx2 , а также у1-х1= -(у2-х2), получаем:
но
Аналогично можно получить
Таким образом, были получены общие фазовые эффекты. В случае азеотропных смесей при y1 = x1 очевидно σ1 – σ2 = 0, при этом σ1 = 0 и σ2 = 0. Таким образом, в случае азеотропных смесей общие фазовые эффекты равны нулю, в отличие от зеотропных смесей, где они отличаются от нуля.
1.8. Цель работы
Получение и анализ новой формы уравнения Ван-дер-Ваальса на примере азеотропных смесей с использованием общих и частных фазовых эффектов.
2. Частные фазовые эффекты и вывод уравнения Ван-дер-Ваальса.
2.1. Вывод основных уравнений для частных фазовых эффектов жидкой и паровой фаз при постоянной температуре и давлении.
Проведем вывод, используя диаграммы зеотропных смесей. На рис. 2.1 представлена зависимость V – x, y из [18]
Любой материальный баланс линеен, в том смысле, что участвующие в нем два потока разных составов лежат на одной прямой с потоком, из которого они образованы.
В случае, когда температура постоянна, а давление является функцией состава, вектор
Приход или уход dm молей из жидкости приводит к изменению, как её состава, так и её количества. С одной стороны бесконечно малое количество ушедшего или пришедшего в жидкость вещества (компонента i) равно d(mxi).
С другой стороны это же количество можно выразить как yi dm.
Очевидно
d(mxi)= yi dm
xi dm + m dxi= yi dm 2.1
m dxi=( yi - xi) dm
Очевидно, если dt>0, то dlnm>0 и вещество приходит в жидкую фазу, если dt<0, то dlnm<0 и вещество уходит из жидкой фазы. Физический смысл здесь ясен: если dt>0 количество жидкости увеличивается, а если dt<0 - уменьшается. Если индекс i равен 1, т.е. компонент легколетучий, имеем:
y1> x1 dt<0 , то dх1<0 или
y1> x1 dt>0 , то dх1>0
Таким образом, для легколетучего компонента, согласно физическому смыслу, если уходит dm молей состава пара, то уменьшается концентрация компонента 1 в жидкости, а если приходит, то увеличивается.
Если же i=2
y2< x2 dt<0 , то dх2>0
y2< x2 dt>0 , то dх2<0
Для тяжелолетучего компонента, если уходит dmмолей состава пара, то концентрация компонента 2 увеличивается в жидкости, а если приходит, то уменьшается.
Вместе с тем, вектор
В обоих случаях векторы колинеарны, т.е. лежат на одной прямой, а их направления определяются знаком dt, как скалярного множителя (бесконечно малого).
Возвращаясь к диаграмме (рис.2.1), в случае постоянной температуры и переменного давления, вектор
Таким образом, величина, определяющая вектор
1. Проводим касательную к изотермо-изобаре жидкости в точке с координатами х1, Vж.
2. Пересечение этой прямой с прямой у1=const, дает вторую точку вектора (А).
3. Следовательно, вектор равен (см. рис. 2.1)
Начальной точкой этого вектора является точка с координатами х1, Vж. Конечной точкой является точка А. В самом деле, если рассматривается коннода жидкость-пар (рис.2.3), то её координаты равны