Смекни!
smekni.com

Исследование фазовых эффектов в бинарных азеотропных смесях (стр. 3 из 6)

но

и

используя эти соотношения, из 1.40 и 1.41 получим:

1.42

1.43

Обозначив

1.44

1.45

получим

1.46

1.47

Таким образом, при

y1>x1 ,dt>0 dx1>0

y2<x2 ,dt>0 dx2<0

Обычно говорят, что если фазовый эффект

положителен, то компонент i«высаливается» из жидкой фазы, а если он отрицателен, то компонент i«всаливается» в жидкую фазу. Это означает, что при организации открытого равновесного испарения количество компонента 1 будет уменьшаться в жидкой фазе, а количество компонента 2 увеличиваться. Последнее понятно, так как уходящий пар будет обогащен легколетучим (первым) компонентом и обеднен тяжелолетучим (вторым) компонентом. Обратим внимание на тот факт, что в случае dt<0 (испарения при постоянных Р и Т) компоненты 1 и 2 меняются местами.

Перейдем к фазовым эффектам в паровой фазе.

Здесь

1.48

1.49

Но при приходе (или уходе) из паровой фазы dm молей состава жидкой фазы

Следовательно, из 1.48 и 1.49 окончательно получаем

1.50

1.51

Следовательно, при

x1< y1, dt>0, dy1<0,

x2> y2,dt>0, dy2>0,

Таким образом, если

положителен, то компонент i«высаливается» из паровой фазы. Таким компонентом является компонент 2, т.е. тяжелолетучий компонент. Если
отрицателен, то компонент i«всаливается» в паровую фазу. Таким компонентом является первый компонент. Таким образом, если организовать процесс открытой равновесной конденсации, будет уходить из пара тяжелолетучий компонент, а количество легколетучего будет увеличиваться. Обобщая, получим, что компонент, который «высаливается» из жидкой фазы, «всаливается» в паровую фазу. А компонент, который «всаливается» в жидкую фазу, «высаливается» из паровой фазы.

Запишем уравнение фазовых эффектов в жидкой фазе.

Так как сумма dx1+dx2=0, следовательно, dx1= -dx2 , а также у1-х1= -(у2-х2), получаем:

но

1.52

Аналогично можно получить

1.53

Таким образом, были получены общие фазовые эффекты. В случае азеотропных смесей при y1 = x1 очевидно σ1 – σ2 = 0, при этом σ1 = 0 и σ2 = 0. Таким образом, в случае азеотропных смесей общие фазовые эффекты равны нулю, в отличие от зеотропных смесей, где они отличаются от нуля.

1.8. Цель работы

Получение и анализ новой формы уравнения Ван-дер-Ваальса на примере азеотропных смесей с использованием общих и частных фазовых эффектов.


2. Частные фазовые эффекты и вывод уравнения Ван-дер-Ваальса.

2.1. Вывод основных уравнений для частных фазовых эффектов жидкой и паровой фаз при постоянной температуре и давлении.

Проведем вывод, используя диаграммы зеотропных смесей. На рис. 2.1 представлена зависимость V – x, y из [18]

Любой материальный баланс линеен, в том смысле, что участвующие в нем два потока разных составов лежат на одной прямой с потоком, из которого они образованы.

В случае, когда температура постоянна, а давление является функцией состава, вектор

направлен вдоль прямой, образующей которой служит вектор коннода (или реконнода). Таким образом, эти векторы, один из которых бесконечно мал, лежат на одной прямой. Если снести эти векторы на отрезок (концентрационный симплекс), то получим вектор ноду
и вектор смещения состава
, эти векторы и должны лежать на одной прямой. Смещение состава может быть вызвано или уходом из m молей жидкости dm молей пара, или приходом dm молей пара в жидкость. Договоримся, в первом случае dm имеет знак минус, а во втором знак плюс. Если рассмотреть проекции вектора ноды на ось х1, y1, то получим: для легколетучего компонента y1>x1. Таким образом, в случае ухода dm молей пара из жидкости векторы
и
будут направлены противоположно друг другу. Геометрически эти векторы выглядят так (рис 2.2):

Приход или уход dm молей из жидкости приводит к изменению, как её состава, так и её количества. С одной стороны бесконечно малое количество ушедшего или пришедшего в жидкость вещества (компонента i) равно d(mxi).

С другой стороны это же количество можно выразить как yi dm.

Очевидно

d(mxi)= yi dm

xi dm + m dxi= yi dm 2.1

m dxi=( yi - xi) dm

, гдеdt=dlnm

Очевидно, если dt>0, то dlnm>0 и вещество приходит в жидкую фазу, если dt<0, то dlnm<0 и вещество уходит из жидкой фазы. Физический смысл здесь ясен: если dt>0 количество жидкости увеличивается, а если dt<0 - уменьшается. Если индекс i равен 1, т.е. компонент легколетучий, имеем:

y1> x1 dt<0 , то dх1<0 или

y1> x1 dt>0 , то dх1>0

Таким образом, для легколетучего компонента, согласно физическому смыслу, если уходит dm молей состава пара, то уменьшается концентрация компонента 1 в жидкости, а если приходит, то увеличивается.

Если же i=2

y2< x2 dt<0 , то dх2>0

y2< x2 dt>0 , то dх2<0

Для тяжелолетучего компонента, если уходит dmмолей состава пара, то концентрация компонента 2 увеличивается в жидкости, а если приходит, то уменьшается.

Вместе с тем, вектор

направлен противоположно вектору ноде
, если dmмолей уходит из жидкости и имеет тоже направление, если dm молей приходит в жидкую фазу. Это видно из уравнения 2.2

2.2

В обоих случаях векторы колинеарны, т.е. лежат на одной прямой, а их направления определяются знаком dt, как скалярного множителя (бесконечно малого).

Возвращаясь к диаграмме (рис.2.1), в случае постоянной температуры и переменного давления, вектор

лежит на одной прямой с вектором, который имеет координаты
, что и показано на рисунке. Если же рассматривается этот же состав х1, имеющий объем Vж, то при постоянных давлении и температуры, направление вектора
должно совпадать с направлением изотермо-изобары жидкой фазы. Следовательно, этот вектор не колинеарен вектору
. Образно говоря, движущая сила этого смещения состава, другая. Эта движущая сила должна лежать на касательной к изотермо-изобаре жидкости, т.е. проекция на ось абсцисс х, у остается при этом неизменной, а изменяется проекция на ось ординат V. Таким образом, векторы
и
имеют разное направление, т.е. смещены друг относительно друга на угол β.

Таким образом, величина, определяющая вектор

находится по определенной методике:

1. Проводим касательную к изотермо-изобаре жидкости в точке с координатами х1, Vж.

2. Пересечение этой прямой с прямой у1=const, дает вторую точку вектора (А).

3. Следовательно, вектор равен (см. рис. 2.1)

Начальной точкой этого вектора является точка с координатами х1, Vж. Конечной точкой является точка А. В самом деле, если рассматривается коннода жидкость-пар (рис.2.3), то её координаты равны