Исследована радикальная полимеризация 1-винилазолов (1-винил-имидазол, 1-винилбенз-имидазол, 1-винилбензтриазол) в присутствии солей переходных металлов MgCl2, NiCl2, ZnCl2. Обнаружена спонтанная полимеризация в присутствии ионов Mg2+, и Zn2+, в то время как координация макрорадикалов с ионами Ni2+ тормозит реакцию полимеризации.[6]
Исследовано взаимодействие полиакриловой кислоты и сополимера акриловая кислота – малеиновая кислота состава 3:2 соответственно, с различными солями (NaCl, MgCl2, CaCl2, SrCl2, ZnCl2, Al(NO3)3, Fe(NO3)3). Обнаружено, что сополимер, как и полимер, взаимодействует со всеми солями. ИК-спектроскопически подтверждена стабилизация заряда полианиона противоионами в результате образования пендатных связей.
Обнаружено, что некоторые типы синтетических полиамфолитов способны связывать ионы металлов при определенных значениях рН и высвобождать их в изоэлектрической точке (ИЭТ).[25,26] Такое поведение полиамфолитов, возможно связано с тем, что в ИЭТ электростатическое притяжение между противоположно заряженными зарядами звеньев полиамфолита является более сильным, чем взаимодействие полимер – металл, что ведет к высвобождению связанных ионов металлов из макромолекулярного клубка.
Возможно образование тройных полимер-металлических комплексов, например, полиэтилен-имин-Cu2+-полиакриловая кислота или поли-4-винилпиридин-Ni2+ (Co2+)-полиакриловая кислота. Координационные и ионные связи могут участвовать в стабилизации таких комплексов. ЭПР-спектроскопически показано возможность существования нескольких типов структур тройных полимер-металлических комплексов с различным количеством функциональных групп поликислот и полиоснования в координационной сфере иона металла. Это зависит как от их относительной способности к связыванию с ионами металла, так и от координационных способностей полимер-металлических систем.
1.3 Применение полимер-металлических комплексов
Путем стехиометрических превращений в звеньях полимерной цепи возможна настройка «первичной» структуры макромолекулы на взаимодействие с определенным ионом металла. Так, комплекс линейный полимер – ион металла сшивается сшивающим агентом, и затем металл удаляется действием минеральной кислоты. Полученный сорбент обладает высокой специфичностью и селективностью. Повышенный интерес к полимерметаллическим комплексам, с одной стороны, обусловлен тем, что некоторые ионы металлов (железо, медь кобальт, и др.) играют особо важную роль в живых организмах – участвуют в ферментативных реакциях (металлоэнзимы), мышечных сокращениях, явлениях переноса (например, гемоглобин), мембранных процессах (натрий-каливый насос) и т.д. Другая необходимость изучения комплексов полимер-металл связана с практическими задачами – извлечением редких и благородных металлов из промышленных сточных вод, созданием высокоэффективных гомогенных и гетерогенных полимерных катализаторов, термо- и механостойких полимерных материалов, полупроводников, мембран и т.д. Возрастает роль комплексных соединений полимеров в медицине. Всестороннее исследование процессов комплексообразования с целью определения состава, структуры и констант устойчивости комплексов, кинетики и механизма их формирования, анализ влияния микроструктуры, конформационного состояния макромолекул и хелатного эффекта, в конечном счете, может привести к установлению основных закономерностей комплексообразования и физико-химического поведения координационных соединений в растворах. Помимо органических полимеров должны быть рассмотрены и неорганические макромолекулы, которые обеспечивают лучшую теоретическую и химическую стойкость образующихся полимер-металлических комплексов. Должны быть также рассмотрены надмолекулярные структуры полимер-металлических комплексов, обеспечивающие некоторые свойства материалов на их основе. Взаимодействия макромолекула – ион металла (комплекс, хелат) контролируют не только высокоорганизованную структуру полимер-металлических комплексов, но и их свойства. Полагают возможным обнаружение полимер-металличесими комплексами следующих свойств и соответствующее их применение:
· Извлечение и концентрирование ионов металлов посредством образования комплексов полимер-металл;
· Терапевтические эффекты – лекарства, протолекарства;
· Селективность – газовый транспорт / разделение, сенсоры;
· Ионная проводимость – электрон-улавливающие устройства, батареи;
· Системы переменой валентности – мультиэлектронный переход, катализ, фотокатализ;
· Электронные взаимодействия в твердом состоянии – проводимость, электрокатализ, электрохимия;
· Фотовзаимодействия в твердом состоянии – фотопроводимость, фотогальваника, лазерография, люминесценция, оптическое хранение / переключение;
· Нелинейная оптика – модуляторы, интегрированная оптика;
· Керамика – квантовые устройства.
Наиболее широко взаимодействия полимер – ион металла используются для извлечения и концентрирования ионов металлов.[6]
1.4 Комплексы полимеров с простыми веществами и другими низкомолекулярными соединениями
Молекулярные комплексы полимеров являются продуктами нековалентных взаимодействий, в основном, между неионными полимерами и различными низкомолекулярными соединениями. Это комплексы полиэтиленгликоля (ПЭГ) с резорцином, поли-N-винилпиролролидона (ПВПД) с фенолами; соединения включения полиэтиленгликоля с мочевиной, тиомочевинной, пергидротрифениленом, солями ртути; поливиниловый спирт (ПВПС) – йод и бораты; комплексы гетероатом (O, S, N, P)-содержащих полимеров с ионами щелочных и щелочноземельных металлов.
Интересный и практически важный тип комплексов – это соединения, образующиеся при взаимодействии полиэтиленгликоля с тиоцианатами, иодидами щелочных металлов. Эти комплексы изучены различными методами: ЯМР, кондуктометрии и др. Структура этих комплексов представляется в виде цилиндров (спирали, включающие ионы металла), скрепляемых анионами. Однако роли анионов уделяется недостаточное внимание.
Значительный интерес представляют молекулярные комплексы образующиеся между гетероатомом (O-, N-, S-, P-) содержащими полимерами и ионами щелочных и щелочноземельных металлов. Эти системы весьма перспективны из-за возможности их использования в качестве твердых электролитов для аккумуляторов и батарей и в регистрирующих системах.
Методами электропроводности, вискозиметрии, ЯМР-, ИК- и КР-спектроскопии, рентгеновской дифрактометрии изучено комплексообразование полимерных эфиров и поливинилпиридинов с солями щелочных и щелочно-земельных металлов. Показано большое влияние на процесс комплексообразования как природы макромолекул и их длины, так и строения катиона, аниона, природы среды, предыстории приготовления образца. Установлен, что процесс комплексообразования может идти двумя путями: 1) ион-дипольным взаимодействием неподеленной пары электронов гетероатома полимерной цепи с катионами металлов; 2) образованием водородной связи между концевыми гидроксильными группами полиэфира и анионами соли. В зависимости от условий преобладает тот или иной механизм взаимодействия.
1.5 Классификация и виды полиэлектролитов
Полиэлектролитами называют полимерные соединения, сочетающие в себе определенное количество функциональных групп. В зависимости от характера функциональных групп полиэлектролиты делятся на поликислоты, полиоснования, полиамфолиты и полибетаины.
Поликислотами называют полимерные соединения, сочетающие в себе кислотные группы (например, - СООН). Полиоснованиями называют полимерные соединения, сочетающие в себе основные группы (например, - ОН, - NH2). Полиамфолитами называют полимерные соединения, сочетающие в себе кислотные и основные группы (например, - ОН и - СООН). Полибетаинами называют полимерные соединения, сочетающие в себе кислотные и основные группы, находящиеся попарно друг около друга и способные образовывать циклические ряды, т.е. подобные органическим аминокислотам (например, - NH2 и - СООН группы, находящиеся попарно друг около друга в звеньях полимерной цепи).
Полиэлектролиты представляют собой большой практический и научный интерес и является одним из немногих классов органических соединений, не существующих в природе, т.е. получить их можно только соответствующими реакциями полимеризации.
В настоящее время применяются как сшитые, так и линейные полимеры, каждые из которых имеют определенные области применения.
Слабосшитые полиэлектролиты, имеющие одну связку на 30 – 70 звеньев полимерной цепи способны поглощать в себя сто, а то и больше тысячи раз от веса растворителя, что значительно превышает способности природных аналогов, таких как мхи и лишайники (в 5 -30 раз больше от своего веса поглощения воды).
При поглощении растворителя слабосшитый полиэлектролит набухает, расстояние между звеньями цепи увеличивается, вместе с тем уменьшается прочность образовавшегося геля. Тем самым исследователи поставили перед собой задачу: найти компромисс между степенью набухания геля, т.е. поглощающей способностью, и его механической прочностью.
Существует несколько способов повышения механической прочности геля, но в настоящее время наиболее часто используют способ внедрения линейного полимера в сетку сшитого. Данный способ подобен образованию органических катенанов и ротоксанов. Внедрение в сетку линейного полимера происходит случайным образом и на сегодняшний момент развития науки и техники не существуют методов управляемого синтеза полимера с заданной структурой, и поэтому в одних и тех же условиях могут получаться полимеры, имеющие различие в некоторых свойствах.