Смекни!
smekni.com

Ионно-парная хроматография (стр. 2 из 2)

Повышение ионной силы водной фазы приводит к уменьшению числа образующихся ионных пар из-за конкуренции буферных ионов с противоионом за образование ионной пары. Поэтому повышение ионной силы в ион-парной хроматографии приводит к снижению k' при разделении на обращенной фазе и к повышению k' при разделении на нормальной фазе. Влияние буферных ионов возрастает в последовательности: NO2-<Br-<.Cl-<SO42– Селективность растворителя в ион-парной хроматографии изменяется по тем же правилам, как и в случае распределительной жидкостной хроматографии.

Оптимальными при ион-парном разделении на обращенной фазе являются средние значения рН. При снижении рН подвижной фазы анионы Х – начинают превращаться в неионизированные кислоты и число ионных пар образца в неподвижной фазе уменьшается, а следовательно, снижается и значение k'. Изменение рН оказывается мощным средством изменения селективности разделения. При высоких значениях рН значение k’ также падает, что аналогично уменьшению обменной емкости, так как ионы ОН – подвижной фазы начинают связывать противоионы и конкурировать с анионом образца в образовании ионных пар. Слабые кислоты или основания обычно не используют в качестве противоионов для ион-парной хроматографии.

При ион-парном разделении на нормальной фазе зависимость k' от рН обратна. Компоненты образца более сильно удерживаются при низких и при высоких значениях рН при условии, что неионизированные ионы образца не удерживаются водной фазой. Объем вводимого в ион-парной хроматографии вещества обычно не должен быть очень большим, чтобы не было размывания зон. Иногда ограничивающим фактором является

концентрация противоиона в подвижной фазе; повышая его концентрацию, можно увеличить максимальную концентрацию вводимого вещества. При повышении концентрации противоиона и соответственном изменении значений k' образца возможно одновременное добавление избытка нейтральной соли в водную фазу, что стабилизирует значение k'. Получаем закономерность, аналогичную закономерности влияния буферного раствора. Максимальное количество вводимого образца может быть повышено при добавлении образца в виде ионных пар. При этом до введения в хроматограф противоион смешивают с образцом, а рН доводят до нужного значения.

Влияние температуры имеет в ион-парной хроматографии большое значение. При использовании механически удерживаемых неподвижных фаз колонка должна быть термостатирована. В ион-парной хроматографии применяют обычно фазы с повышенной вязкостью, а повышение температуры снижает ее. Зависимость селективности от температуры также наиболее выражена в ион-парной хроматографии.

Применяя противоионы, поглощающие в УФ-области, можно получать при ион-парном разделении легко обнаруживаемые спектрофотометром ионные комплексы. Требуется, однако, чтобы противоионы не растворялись в органической фазе во избежание высокого поглощения выходящего из колонки раствора. Таким образом, используя ион пикрата или 2-нафтилсульфоната, можно обнаружить амины.

Одним из затруднений, наиболее часто встречающихся в ион-парной хроматографии, является нестабильность колонок, особенно в обращенно-фазном режиме. В колонках с обычной фазой наблюдается постепенный унос противоиона из неподвижной фазы, однако этого можно избежать, получая ионные пары до введения образца в хроматограф. Большим недостатком ион-парной хроматографии является образование хвостов. Причиной этого является либо диссоциация ионных пар, которая уменьшается при повышении концентрации противоиона, либо неправильная концентрация буферного раствора. Иногда удается уменьшить затягивание зон и увеличить эффективность разделения, перейдя от обычной ион-парной хроматографии к хроматографии с использованием поверхностно-активных веществ.

Такой способ разделения, по-видимому, пригоден для анализа очень полярных молекул, например сульфированных красителей. Длина углеродной цепи неподвижной фазы также варьируется в ион-парной хроматографии.

Воспроизводимость колонок в ион-парной хроматографии удовлетворительная в отличие от таковой в ионообменной хроматографии.

Ион-парную хроматографию обычно применяют для анализа физиологических и биологических жидкостей, полярных соединений и веществ с несколькими ионизируемыми группами, в том числе промежуточных продуктов красителей. Расфасованные реагенты для ион-парной хроматографии, состоящие из буфера и противоиона, которые можно непосредственно добавлять в подвижную фазу, выпускает фирма «Уотерс». К ним относится реактив А (0,005 М раствор тетрабутиламмонийфосфата, рН=7,5), реактив В-5 (0,005 М раствор пентансульфокислоты, рН=3,5) и реактив В-7 (0,005 М раствор гептансульфокислоты, рН=3,5).

При отсутствии четких литературных аналогий начинают разделение методом ион-парной хроматографии на обращенной фазе C18 с размером частиц 5–10 мкм. Наполнителем в ион-арной хроматографии с добавкой органической неподвижной азы является материал, используемый для обращенной фазы, при работе с нормальной фазой применяют обычный силикагель 5–10 мкм, как и в случае адсорбционной хроматографии. возможно применение нейтральных полистирол-дивинильных смол или смол ХАД. Колонки с C18 служат дольше в ион-парной хроматографии, чем колонки с неподвижной фазой, имеющей более короткую углеводородную цепь. Последующая после «привязывания» фазы силанизация улучшает свойства материала и увеличивает срок его службы (партисил 5 ОДС).

Для увеличения стабильности колонки рН следует уменьшать по мере увеличения концентрации противоиона.

Для этой же цели предложено использовать триэтиламин в качестве основания, так как этот реактив доступен, растворим, удобен в работе и обладает малой химической актив-ностью. Предполагается, что сильные основания, так же как четвертичные гидроксиды, разрушают силикагелевую подложку. Подвижную фазу для ион-парной хроматографии желательно фильтровать через фильтр из стекловолокна, а после окончания работы колонку следует промывать пятикратным объемом элюента метанол – вода (50: 50).

Рис. 1. Хроматограмма витаминов, полученная на колонке размером 300 Х 4 мм с µ-бондапаком C18, подвижная фаза – метанол – вода (70: 30) с 0,1% В7 и В5 (1:1), расход 1 мл/мин, детектор–УФ (254 нм): 1 – никотинамид; 2 – пиродоксин; 3 – рибофлавин; 4 – тиамин

Рис. 2. Хроматограмма изомеров фталевой кислоты, полученная на колонке размером 300 Х 4 мм с µ-бондапаком C18, подвижная фаза – вода с добавкой реактива А, метанол с добавкой реактива А, градиент от 5 до 40% метанола за 15 мин, скорость потока 2 мл/мин, детектор – УФ (254 нм): 1 – терефталевая кислота; 2 – ортофталевая кислота; 3 – изофталевая кислота

Необходимо, чтобы противоион растворялся в элюенте. Неправильный выбор противоиона может привести к образованию осадка, что вызовет возрастание значений k', размывание пика и заметное повышение давления на входе. Концентрация обычно колеблется от 0,01 М для противоиона с малой длиной цепи до 0,005 М для противоиона с более длинной цепью.

Для препаративных разделений ион-парную хроматографию не применяют, а количество вводимого образца сопоставимо с количествами, применяемыми для распределительной хроматографии. Увеличение максимально вводимого количества может быть достигнуто за счет предварительного образования ионных пар в образце. Для некоторых ионизированных (независимо от рН) анионов и катионов не требуется добавка буфера. Кислоты обычно разделяются при рН=4–7,4, а основания – при рН=2–5. При этом значения рН подвижной фазы могут для улучшения селективности разделения варьироваться.

Следует помнить, что ион-парная хроматография на обращенной фазе в целом метод более грубый, чем разделение на обращенной фазе, и должен использоваться, когда неприменимы распределительная хроматография на обращенной фазе или метод подавления ионов.


Литература

1. Baker D.R., George S. A/Amer. Lab., 1980, v. 12, No. 1, p. 41–46.

2. Bly D.D./Anal Chem, 1969, v. 41, No. 2, p. 477–480.

3. Drott E.E. //in Chromatographic Science Series, v. 8, Liquid Chromatography of Polymers and Related Materials, ed. J. Gazes. N.Y., M. Dekker, 1977, p. 41.

4. Krishen A., Tucker R.G./Anal. Chem., 1977, v. 49, No. 4, p. 898.

5. Mori S., Yamakctwa A./J. Liquid Chromatogr., 1980, v. 3, No. 3, p. 329 – 342.

6. Verzele M., Geeraert E./J. Chromatogr. Sci, 1980, v. 18, No. 10, p. 559 – 570.

7. Nettleton D.E./J. Liquid Chromatogr, 1981, suppl. No. 2, p. 359–398.

8. Rable F.M./International Lab, 1980, v. 10, No. 8, p. 91–98.

9. Small Bore Liquid Chromatography Columns //ed. R.P.W. Scott. N.Y., J. Wiley, 1984. 294 p.

10.Microcolumn High-Performance Liquid Chromatography //ed. P. Kucera. N. Y, Elsevier, 1984. 302 p.

11.Scott R.P.W., Kucera P./J. Chromatogr, 1979, v. 169, p. 51–62.

12.Scott R.P.W., Kucera P./J. Chromatogr, 1979, v. 185, p. 22–31.

13.Scott R.P.W./J. Chromatogr. Sci, 1980, v. 18, No. 1, p. 49–54.

14.Reese R.E., Scott R.P.W./J. Chromatogr. Sci, 1980, v. 18, No. 8, p. 479 – 486.

15.Scott R.P.W., Simpson C.F./J. Chromatogr. Sci, 1981, v. 19, No. 5, 224–233.