Смекни!
smekni.com

Интерполиэлектролитные комплексы (стр. 2 из 6)

Строение ИПЭК

Важным этапом исследования ИПЭК было определение их строения. Поскольку растворимые ИПЭК в водных растворах представляют собой индивидуальные устойчивые частицы, для их изучения в водных растворах были использованы такие методы исследования растворов полимеров, как светорассеивание, турбидиметрия, вискозиметрия, гель-хроматография, ультрацентрифугирование и другие. На основании изучения нерастворимых ИПЭК в твердой фазе принято, что в них обе взаимодействующие полимерные цепи располагаются параллельно друг другу и образуют двухтяжные лестничные структуры. Такие структуры представляют собой совокупность кооперативно взаимодействующих противоположно заряженных звеньев цепи, характеризуются повышенной жесткостью и высокой гидрофобностью и приводят к выделению их из раствора. Растворимые ИПЭК представляют собой блок-сополимеры, в которых сочетаются достаточно протяженные гидрофобные и гидрофильные фрагменты.

Явление агломерации комплексообразующих молекул в растворе ИПЭК аналогично процессам мицелообразования. Степень агломеризации мало чувствительна к изменению молекулярных масс ЛПЭ, но определяется соотношением количества звеньев ЛПЭ, включенных в гидрофильные и гидрофобные блоки. Процессы агломеризации и распада агломератов ИПЭК можно контролировать путем изменения состава полимерного комплекса. Существенное влияние на эти процессы оказывает степень ионизации звеньев ЛПЭ, включенных в однотяжные гидрофильные блоки. Если ЛПЭ – слабый полиэлектролит, то уменьшение степени ионизации приводит к прогрессирующей агломеризации частиц растворимого ИПЭК вплоть до их выделения из раствора. Именно поэтому ИПЭК, в которых в роли ЛПЭ выступает поликарбоновая кислота, растворимы в щелочной среде. Если ЛПЭ – полиоснование, поликомплекс приобретает способность растворяться лишь в кислой среде. Степень агломеризации зависит и от степени связывания противоионов со свободными участками ЛПЭ. Помимо состояния окружающей среды способность к агломеризации определяется химическим строение ЛПЭ и БПЭ. Распад агломератов ИПЭК наблюдают при введении свободных ЛПЭ. Фазовое разделение в водных растворах ИПЭК наблюдают также при введении в раствор низкомолекулярного электролита. Низкомолекулярные соли, являющиеся конкурентами в реакции между полиэлектролитами, приводят к разрушению межмолекулярных солевых связей, что сопровождается перегруппировкой участков ЛПЭ и БПЭ в частицах растворимых ИПЭК и образованием очень компактных частиц, имеющих состав, близкий к стехиометрическому. Именно из таких частиц образуются нерастворимые ИПЭК в водно-солевых растворах. Тогда в растворе остаются практически свободные цепи ЛПЭ. Причиной такого фазового разделения является диспропорционирование частиц растворимого ИПЭК, протекающего по механизму полиионного обмена в гомогенных растворах под действием низкомолекулярного электролита.

Таким образом, образование и изменение состава ИПЭК в растворах, обусловленное обратимостью интерполимерной реакции , носит сложный характер и определятся многими факторами, к которым следует отнести природу полиэлектролитов, их молекулярную массу, ММР, ионную силу раствора. Изучение строения ИПЭК требует широкого использования всего известного арсенала методов исследования полимеров.

Создание физиологически активных полимерных препаратов на основе ИПЭК возможно, во-первых, при использовании биологически активных полиэлектролитов, во-вторых, иммобилизацией в ИПЭК низкомолекулярного ЛВ, получившие название трехкомпонентные ИПЭК с низкомолекулярным посредником (ТИПЭК). В качестве физиологически активных полиэлектролитов были использованы биополимеры, такие, как белки, нуклеиновые кислоты, гепарин, ферменты и другие. Отличительными чертами таких лекарственных препаратов являются повышенная термическая стабильность, устойчивость к денатурации, возможность создания саморегулирующихся ферментативных систем и использования их в качестве депо антигепариновых веществ. При включении низкомолекулярного БАВ используют разные по электролитической природе полимеры (полиоснование и поликислота) или одинаковые полиэлектролиты (два полиоснования или две поликислоты). Иммобилизация низкомолекулярного посредника происходит или за счет ионных или водородных связей. На основании ТИПЭК могут быть получены микрокапсулы с размерами наночастиц, что открывает перспективы для разработки новых траспортных форм доставки ЛВ в организм.

Поливинилпирролидон: ЕГО ПРИМЕНЕНИЕ и важнейшие характеристики

Поливинилпирролидон является виниловым полимером. В основном его получают методом радикальной виниловой полимеризации из мономера винилпирролидона.

Начало применения поливинилпирролиона

Поливинилпирролидон можно найти во многих таких местах, где вы вовсе не ожидали найти полимеры. Например, поливинилпирролидон был основной составляющей первых лаков для волос, получивших действительно большой коммерческий успех в начале 1950-х годов. Огромные прически, похожие на пчелиные ульи, которые потом появились в шестидесятых годах двадцатого века были обязаны своим происхождением поливинилпирролидону. Этот полимер работал в качестве лака для волос, поскольку он растворим в воде. Это означало, что его можно было смыть, когда вы моете голову. Но это был и его недостаток. Поливинилпирролидон адсорбировал воду из воздуха, придавая волосам клейкий вид. Это удалось исправить при помощи другого полимера, силикона, под названием полидиметилсилоксан. Для того, чтобы понять, почему этот силикон был более хорошим лаком для волос, надо во-первых понять, как вообще работает лак для волос. Когда вы распыляете поливинилпирролидон на волосы, он создает на них тонкую пленку. Эта пленка довольно жесткая и она не дает волосам двигаться и растрепываться. В большинстве случаев разные виды полимеров не смешиваются. Поэтому, если мы добавим немного силикона в лак для волос, то силикон и поливинилпирролидон разделятся по фазам, как только они окажутся на волосах. Силикон образует слой поверх слоя поливинилпирролидона, и этот слой отталкивает воду, что придает волосам более естественный вид.

Поливинилпирролидон спасает жизни

Но это далеко не все то, что может делать поливинилпирролидон. Он встречается в клее, которым склеена многослойная фанера. Но если вы хотите услышать что-нибудь более замечательное, я могу сказать вам, что этот полимер может на самом деле спасать жизнь. Кто-то когда-то в первой половине двадцатого века сообразил, что пациенту, который потерял много крови, можно делать переливание кровяной плазмы, и эта плазма продлит жизнь пациенту, пока не появится возможность перелить ему цельную кровь. Но иногда было трудно найти даже плазму крови, и пришлось придумать, как растянуть запас плазмы подольше. Одним из таких мест является поле боя. Водно-солевой раствор, содержащий 6 % низкомолекулярного поливинилпирролидона (относительная молекулярная масса 12 600+2700) и ионы натрия, калия, кальция, магния, хлора, или гемодез, используется в качестве заменителя плазмы крови. Поливинилпирролидон (ПВПД) хорошо растворим в воде. Гемодез - прозрачная жидкость желтого цвета; относительная вязкость 1, 5 - 2, 1; рН 5, 2 - 7, 0. Применяют для дезинтоксикации организма при токсических формах острых желудочно-кишечных заболеваний (дизентерия, диспепсия, сальмонелезы и др.), ожоговой болезни в фазе интоксикации, послеоперационной интоксикации, инфекционных заболеваниях, токсикозах беременных и других патологических процессах, сопровождающихся интоксикацией. Препараты, аналогичные гемодезу, выпускаются за рубежом под названиями: Neocompensan, Реristan Н и др. Механизм действия гемодеза обусловлен способностью низкомолекулярного поливинилпирролидона связывать токсины, циркулирующие в крови, и быстро выводить их из организма. Препарат быстро выводится почками (до 80 % за 4 ч) и частично через кишечник. Он усиливает почечный кровоток, повышает клубочковую фильтрацию и увеличивает диурез. При острых желудочно-кишечных заболеваниях и интоксикациях обычно достаточно 1 - 2 вливаний. При ожоговой болезни в фазе интоксикации (1 - 5-й день болезни) и в фазе интоксикации острой лучевой болезни производят 1 - 2 вливания, при гемолитической болезни и токсемии новорожденных - от 2 до 8 вливаний (ежедневно или 2 раза в день). Гемодез может дать хороший дезинтоксикационный эффект при сепсисе, но в связи с возможным понижением артериального давления, необходимо тщательное наблюдение за состоянием больного. При медленном введении гемодез обычно осложнений не вызывает. Введение с повышенной скоростью может вызвать понижение артериального давления, тахикардию, затруднение дыхания и потребовать введения сосудосуживающих и сердечных средств, кальция хлорида. Во время второй мировой войны и Корейской войны плазму крови разбавляли поливинилпирролидоном, чтобы большему количеству раненых можно было помочь, имея ограниченный запас кровяной плазмы.

Средство борьбы с алкогольными токсинами

Однако применение поливинилпирролидона не ограничивается вышеперечисленным. Его исследование ведется и сейчас, изыскиваются способы его применения в различных областях медицины: стоматологии, офтальмологии, токсикологии. Например, в Институте биохимии им.О.В.Палладина под руководством академика М.Ф.Гулого был создан многокомпонентный препарат Медихронал-Дарница— современное патогенетическое средство для снятия алкогольной интоксикации, лечения алкогольной зависимости и ее последствий. Этот препарат обладает комплексом ценных свойств, и детоксикационное, гепатопротекторное и метаболическое действие этого препарата целесообразно использовать при лечении печеночной патологии на фоне злоупотребления алкоголем. Рекомендован к применению Межведомственным центром клинической и экспериментальной наркологии МЗ и НАНУкраины при Украинском НИИ социальной, судебной психиатрии и наркологии. В состав препарата входят формиат натрия, глюкоза, аминоуксусная кислота и низкомолекулярный поливинилпирролидон. Его роль в препарате - связывание токсинов и способствование их выведению из организма, кроме того, поливинилпирролидон предотвращает обратное всасывание алкоголя в просвете кишечника и нейтрализует самый токсичный метаболит этанола— ацетальдегид.